import numpy as np import torch import torch.nn.functional as F from torchvision.transforms.functional import normalize import gradio as gr from briarmbg import BriaRMBG import PIL from PIL import Image import requests from io import BytesIO net = BriaRMBG.from_pretrained("briaai/RMBG-1.4") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") net.to(device) def resize_image(image): image = image.convert('RGB') model_input_size = (1024, 1024) image = image.resize(model_input_size, Image.BILINEAR) return image def process(image=None, url=None): if url: response = requests.get(url) image = Image.open(BytesIO(response.content)) else: image = Image.fromarray(image) w, h = orig_im_size = image.size image = resize_image(image) im_np = np.array(image) im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1) im_tensor = torch.unsqueeze(im_tensor, 0) im_tensor = torch.divide(im_tensor, 255.0) im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) if torch.cuda.is_available(): im_tensor = im_tensor.cuda() result = net(im_tensor) result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0) ma = torch.max(result) mi = torch.min(result) result = (result - mi) / (ma - mi) im_array = (result * 255).cpu().data.numpy().astype(np.uint8) pil_im = Image.fromarray(np.squeeze(im_array)) new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0)) new_im.paste(image, mask=pil_im) return new_im title = "Background Removal" description = r"""Background removal model developed by BRIA.AI, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.
For test upload your image and wait. Read more at model card briaai/RMBG-1.4.
""" examples = [['./input.jpg'],] inputs = [ gr.Image(source="upload", tool="editor", type="numpy", label="Upload Image"), gr.Textbox(label="Image URL", placeholder="Enter the URL of an image") ] output = gr.Image(type="pil", label="Image without background", show_download_button=True) demo = gr.Interface(fn=process, inputs=inputs, outputs=output, examples=examples, title=title, description=description) if __name__ == "__main__": demo.launch(share=False)