fkalpana commited on
Commit
de280aa
Β·
verified Β·
1 Parent(s): 0fd5d8b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -1
app.py CHANGED
@@ -6,6 +6,7 @@ from datasets import load_dataset
6
  tokenizer = T5Tokenizer.from_pretrained('t5-small')
7
  model = T5ForConditionalGeneration.from_pretrained('t5-small')
8
 
 
9
  def generate_sql(question):
10
  # Format the question for the model if needed. For example:
11
  # input_text = f"translate English to SQL: {question}"
@@ -21,13 +22,16 @@ def generate_sql(question):
21
  sql_query = tokenizer.decode(output_ids, skip_special_tokens=True)
22
  return sql_query
23
 
 
 
24
  # Define the Gradio interface
25
  iface = gr.Interface(
26
  fn=generate_sql,
27
  inputs=gr.Textbox(lines=2, placeholder="Enter your question here..."),
28
  outputs=gr.Textbox(),
29
  title="Natural Language to SQL",
30
- description="This app uses a Seq2Seq model to generate SQL queries from natural language questions."
 
31
  )
32
 
33
  # Launch the app
 
6
  tokenizer = T5Tokenizer.from_pretrained('t5-small')
7
  model = T5ForConditionalGeneration.from_pretrained('t5-small')
8
 
9
+ dataset = load_dataset("wikisql", split='test')[:3]
10
  def generate_sql(question):
11
  # Format the question for the model if needed. For example:
12
  # input_text = f"translate English to SQL: {question}"
 
22
  sql_query = tokenizer.decode(output_ids, skip_special_tokens=True)
23
  return sql_query
24
 
25
+ examples = [[item['question']] for item in dataset]
26
+
27
  # Define the Gradio interface
28
  iface = gr.Interface(
29
  fn=generate_sql,
30
  inputs=gr.Textbox(lines=2, placeholder="Enter your question here..."),
31
  outputs=gr.Textbox(),
32
  title="Natural Language to SQL",
33
+ description="This app uses a Seq2Seq model to generate SQL queries from natural language questions.",
34
+ examples=examples
35
  )
36
 
37
  # Launch the app