fkalpana commited on
Commit
87e4241
Β·
verified Β·
1 Parent(s): 3c94101

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -7,19 +7,19 @@ tokenizer = T5Tokenizer.from_pretrained('t5-small', legacy=False)
7
  model = T5ForConditionalGeneration.from_pretrained('t5-small')
8
 
9
  # dataset = load_dataset("b-mc2/sql-create-context")
10
- dataset = load_dataset("rotten_tomatoes", split="train")
11
 
12
- # examples = []
13
 
14
- # for i in range(3): # Let's take the first 3 examples
15
- # item = dataset[i]
16
- # question = item['question']
17
- # examples.append([question])
18
 
19
  def generate_sql(question):
20
  # Format the question for the model if needed. For example:
21
- # input_text = f"translate English to SQL: {question}"
22
- input_text = f"{question}" # Directly use the question if the model is fine-tuned for SQL generation
23
 
24
  # Tokenize the input text
25
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
@@ -39,7 +39,7 @@ iface = gr.Interface(
39
  outputs=gr.Textbox(),
40
  title="Natural Language to SQL",
41
  description="This app uses a Seq2Seq model to generate SQL queries from natural language questions.",
42
- # examples=examples
43
  )
44
 
45
  # Launch the app
 
7
  model = T5ForConditionalGeneration.from_pretrained('t5-small')
8
 
9
  # dataset = load_dataset("b-mc2/sql-create-context")
10
+ dataset = load_dataset("wikisql", split="train")
11
 
12
+ examples = []
13
 
14
+ for i in range(3): # Let's take the first 3 examples
15
+ item = dataset[i]
16
+ question = item['question']
17
+ examples.append([question])
18
 
19
  def generate_sql(question):
20
  # Format the question for the model if needed. For example:
21
+ input_text = f"translate English to SQL: {question}"
22
+ # input_text = f"{question}" # Directly use the question if the model is fine-tuned for SQL generation
23
 
24
  # Tokenize the input text
25
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
 
39
  outputs=gr.Textbox(),
40
  title="Natural Language to SQL",
41
  description="This app uses a Seq2Seq model to generate SQL queries from natural language questions.",
42
+ examples=examples
43
  )
44
 
45
  # Launch the app