Spaces:
Runtime error
Runtime error
File size: 1,299 Bytes
54e8483 9a6e449 aaa6f9c 54e8483 bd0d5ac a49fba1 bd0d5ac aaa6f9c a49fba1 aaa6f9c 3b69718 bd0d5ac 4c23181 b503163 bd0d5ac a49fba1 50aa5cd 3b69718 bd0d5ac 2a369c5 1a2cecb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
# Load tokenizer and model
model_name = "mrm8488/t5-base-finetuned-wikiSQL" # Alternative model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
def preprocess_query(query):
# Example preprocessing: convert to lowercase
return query.lower()
def generate_sql(query):
try:
processed_query = preprocess_query(query)
inputs = tokenizer(processed_query, return_tensors="pt", padding=True)
outputs = model.generate(**inputs, max_length=512)
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
return sql_query
except Exception as e:
logging.error(f"Error generating SQL query: {e}")
return "Error generating SQL query"
# Create a Gradio interface
interface = gr.Interface(
fn=generate_sql,
inputs=gr.Textbox(lines=2, placeholder="Enter your natural language query here..."),
outputs="text",
title="NL to SQL with T5",
description="This model converts natural language queries into SQL. Enter your query!"
)
# Launch the app
if __name__ == "__main__":
interface.launch()
|