SentiNet / train.py
Hunter-Pax's picture
Upload 18 files
e7a44ba verified
raw
history blame
10.2 kB
import os
import time
import torch
import matplotlib.pyplot as plt
import seaborn as sns
from collections import Counter
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from utility import (
load_emotion_dataset,
encode_labels,
build_vocab,
collate_fn_rnn,
collate_fn_transformer
)
from models.rnn import RNNClassifier
from models.lstm import LSTMClassifier
from models.transformer import TransformerClassifier
from tqdm import tqdm
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def summarize_class_distribution(dataset, label_encoder):
labels = [example["label"] for example in dataset]
counter = Counter(labels)
print("\nπŸ” Class distribution:")
for label_idx, count in sorted(counter.items()):
label_name = label_encoder.inverse_transform([label_idx])[0]
print(f"{label_name:>10}: {count}")
def plot_class_countplot(dataset, label_encoder):
labels = [example["label"] for example in dataset]
counts = Counter(labels)
label_display = [label_encoder.inverse_transform([i])[0] for i in sorted(counts.keys())]
values = [counts[i] for i in sorted(counts.keys())]
plt.figure(figsize=(8, 5))
sns.barplot(x=label_display, y=values)
plt.title("Emotion Class Distribution (Training Set)")
plt.xlabel("Emotion")
plt.ylabel("Count")
plt.tight_layout()
os.makedirs("plots", exist_ok=True)
plt.savefig("plots/class_distribution.png")
plt.close()
def plot_loss_curve(train_losses, test_losses, model_name):
plt.figure(figsize=(8, 4))
plt.plot(train_losses, label="Train Loss")
plt.plot(test_losses, label="Test Loss")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.title(f"{model_name} Train vs Test Loss")
plt.legend()
os.makedirs("plots", exist_ok=True)
plt.savefig(f"plots/{model_name.lower()}_loss_curve.png")
plt.close()
def compute_test_loss(model, dataloader, criterion, model_type):
total_loss = 0
with torch.no_grad():
model.eval()
for batch in dataloader:
if isinstance(batch, tuple):
input_ids, labels = batch
attention_mask = None
else:
input_ids = batch["input_ids"]
attention_mask = batch.get("attention_mask", None)
labels = batch["labels"]
input_ids = input_ids.to(device)
labels = labels.to(device)
if attention_mask is not None:
attention_mask = attention_mask.to(device)
if model_type == "transformer":
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
else:
outputs = model(input_ids)
loss = criterion(outputs, labels)
total_loss += loss.item()
return total_loss / len(dataloader)
def train_model(model, train_loader, test_loader, optimizer, criterion, epochs, model_type="rnn"):
train_losses = []
test_losses = []
for epoch in range(epochs):
model.train()
start_time = time.time()
total_loss = 0
progress_bar = tqdm(train_loader, desc=f"Epoch {epoch + 1}", ncols=100)
for batch in progress_bar:
optimizer.zero_grad()
if isinstance(batch, tuple):
input_ids, labels = batch
attention_mask = None
else:
input_ids = batch["input_ids"]
attention_mask = batch.get("attention_mask", None)
labels = batch["labels"]
input_ids = input_ids.to(device)
labels = labels.to(device)
if attention_mask is not None:
attention_mask = attention_mask.to(device)
if model_type == "transformer":
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
else:
outputs = model(input_ids)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
avg_loss = total_loss / len(train_loader)
progress_bar.set_postfix({"Avg Loss": f"{avg_loss:.4f}"})
test_loss = compute_test_loss(model, test_loader, criterion, model_type)
train_losses.append(avg_loss)
test_losses.append(test_loss)
print(f"βœ… Epoch {epoch + 1} | Train: {avg_loss:.4f} | Test: {test_loss:.4f} | Time: {time.time() - start_time:.2f}s")
torch.cuda.empty_cache()
del model
return train_losses, test_losses
def evaluate_preds(model, dataloader, model_type="rnn"):
model.eval()
all_preds = []
all_labels = []
with torch.no_grad():
for batch in dataloader:
if isinstance(batch, tuple):
input_ids, labels = batch
attention_mask = None
else:
input_ids = batch["input_ids"]
attention_mask = batch.get("attention_mask", None)
labels = batch["labels"]
input_ids = input_ids.to(device)
labels = labels.to(device)
if attention_mask is not None:
attention_mask = attention_mask.to(device)
if model_type == "transformer":
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
else:
outputs = model(input_ids)
preds = torch.argmax(outputs, dim=1)
all_preds.extend(preds.cpu().tolist())
all_labels.extend(labels.cpu().tolist())
return all_labels, all_preds
def plot_confusion_matrices(y_true_train, y_pred_train, y_true_test, y_pred_test, labels, title, filename):
fig, axes = plt.subplots(1, 2, figsize=(14, 6))
cm_train = confusion_matrix(y_true_train, y_pred_train)
cm_test = confusion_matrix(y_true_test, y_pred_test)
ConfusionMatrixDisplay(cm_train, display_labels=labels).plot(ax=axes[0], cmap='Blues', colorbar=False)
axes[0].set_title(f"{title} - Train")
ConfusionMatrixDisplay(cm_test, display_labels=labels).plot(ax=axes[1], cmap='Oranges', colorbar=False)
axes[1].set_title(f"{title} - Test")
plt.tight_layout()
os.makedirs("plots", exist_ok=True)
plt.savefig(f"plots/{filename}")
plt.close()
# Load and encode data
data = load_emotion_dataset("train")
train_data, label_encoder = encode_labels(data)
test_data, _ = encode_labels(load_emotion_dataset("test"))
labels = label_encoder.classes_
output_dim = len(labels)
padding_idx = 0
summarize_class_distribution(train_data, label_encoder)
plot_class_countplot(train_data, label_encoder)
# Build vocab
vocab = build_vocab(train_data)
model_name = "prajjwal1/bert-tiny"
tokenizer = AutoTokenizer.from_pretrained(model_name)
# DataLoaders (no augmentation)
train_loader_rnn = DataLoader(train_data, batch_size=64, shuffle=True, collate_fn=lambda b: collate_fn_rnn(b, vocab, partial_prob=0.0))
test_loader_rnn = DataLoader(test_data, batch_size=64, shuffle=False, collate_fn=lambda b: collate_fn_rnn(b, vocab, partial_prob=0.0))
train_loader_tf = DataLoader(train_data, batch_size=64, shuffle=True, collate_fn=lambda b: collate_fn_transformer(b, tokenizer, partial_prob=0.0))
test_loader_tf = DataLoader(test_data, batch_size=64, shuffle=False, collate_fn=lambda b: collate_fn_transformer(b, tokenizer, partial_prob=0.0))
# Initialize and train models
rnn = RNNClassifier(len(vocab), 128, 128, output_dim, padding_idx).to(device)
lstm = LSTMClassifier(len(vocab), 128, 128, output_dim, padding_idx).to(device)
transformer = TransformerClassifier(model_name, output_dim).to(device)
criterion = torch.nn.CrossEntropyLoss()
# rnn_train_losses, rnn_test_losses = train_model(rnn, train_loader_rnn, test_loader_rnn, torch.optim.Adam(rnn.parameters(), lr=1e-4), criterion, epochs=50, model_type="rnn")
# torch.save(rnn.state_dict(), "pretrained_models/best_rnn.pt")
# plot_loss_curve(rnn_train_losses, rnn_test_losses, "RNN")
#
# lstm_train_losses, lstm_test_losses = train_model(lstm, train_loader_rnn, test_loader_rnn, torch.optim.Adam(lstm.parameters(), lr=1e-4), criterion, epochs=50, model_type="lstm")
# torch.save(lstm.state_dict(), "pretrained_models/best_lstm.pt")
# plot_loss_curve(lstm_train_losses, lstm_test_losses, "LSTM")
tf_train_losses, tf_test_losses = train_model(transformer, train_loader_tf, test_loader_tf, torch.optim.Adam(transformer.parameters(), lr=2e-5), criterion, epochs=50, model_type="transformer")
torch.save(transformer.state_dict(), "pretrained_models/best_transformer.pt")
plot_loss_curve(tf_train_losses, tf_test_losses, "Transformer")
# Evaluate and plot
model_paths = {
"RNN": "pretrained_models/best_rnn.pt",
"LSTM": "pretrained_models/best_lstm.pt",
"Transformer": "pretrained_models/best_transformer.pt"
}
for name in ["RNN", "LSTM", "Transformer"]:
if name == "RNN":
model = RNNClassifier(len(vocab), 128, 128, output_dim, padding_idx).to(device)
loader = train_loader_rnn
test_loader = test_loader_rnn
elif name == "LSTM":
model = LSTMClassifier(len(vocab), 128, 128, output_dim, padding_idx).to(device)
loader = train_loader_rnn
test_loader = test_loader_rnn
else:
model = TransformerClassifier(model_name, output_dim).to(device)
loader = train_loader_tf
test_loader = test_loader_tf
model.load_state_dict(torch.load(model_paths[name]))
model.eval()
y_train_true, y_train_pred = evaluate_preds(model, loader, model_type=name.lower())
y_test_true, y_test_pred = evaluate_preds(model, test_loader, model_type=name.lower())
plot_confusion_matrices(
y_train_true, y_train_pred, y_test_true, y_test_pred,
labels=labels,
title=name,
filename=f"{name.lower()}_confusion_matrices.png"
)