eli02's picture
Update main.py
923ee7a verified
raw
history blame
12.6 kB
from fastapi import FastAPI, HTTPException, Depends, status
from fastapi.responses import FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm
from pydantic import BaseModel
from jose import JWTError, jwt
from datetime import datetime, timedelta
from openai import OpenAI
from pathlib import Path
from typing import List, Optional, Dict
from datasets import Dataset, load_dataset
from sentence_transformers import SentenceTransformer
from huggingface_hub import login
from contextlib import asynccontextmanager
import pandas as pd
import numpy as np
import torch as t
import os
import logging
from functools import lru_cache
from diskcache import Cache
# Configure logging
logging.basicConfig(level=logging.INFO)
@asynccontextmanager
async def lifespan(app: FastAPI):
# Preload the model
get_sentence_transformer()
yield
# Initialize FastAPI app
app = FastAPI()
# Initialize disk cache
cache = Cache('./cache')
# JWT Configuration
SECRET_KEY = os.environ.get("prime_auth", "c0369f977b69e717dc16f6fc574039eb2b1ebde38014d2be")
REFRESH_SECRET_KEY = os.environ.get("prolonged_auth", "916018771b29084378c9362c0cd9e631fd4927b8aea07f91")
ALGORITHM = "HS256"
ACCESS_TOKEN_EXPIRE_MINUTES = 30
REFRESH_TOKEN_EXPIRE_DAYS = 7
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="login")
# Pydantic models
class QueryInput(BaseModel):
query: str
class SearchResult(BaseModel):
text: str
similarity: float
model_type: str
class TokenResponse(BaseModel):
access_token: str
refresh_token: str
token_type: str
class SaveInput(BaseModel):
user_type: str
username: str
query: str
retrieved_text: str
model_type: str
reaction: str
class SaveBatchInput(BaseModel):
items: List[SaveInput]
class RefreshRequest(BaseModel):
refresh_token: str
# Cache management
@lru_cache(maxsize=1)
def get_sentence_transformer():
"""Load and cache the SentenceTransformer model with lru_cache"""
return SentenceTransformer(model_name_or_path="all-mpnet-base-v2", device="cpu")
def get_cached_embeddings(text: str, model_type: str) -> Optional[List[float]]:
"""Try to get embeddings from cache"""
cache_key = f"{model_type}_{hash(text)}"
return cache.get(cache_key)
def set_cached_embeddings(text: str, model_type: str, embeddings: List[float]):
"""Store embeddings in cache"""
cache_key = f"{model_type}_{hash(text)}"
cache.set(cache_key, embeddings, expire=86400) # Cache for 24 hours
@lru_cache(maxsize=1)
def load_dataframe():
"""Load and cache the parquet dataframe"""
database_file = Path(__file__).parent / "[all_embedded] The Alchemy of Happiness (Ghazzālī, Claud Field) (Z-Library).parquet"
return pd.read_parquet(database_file)
# Utility functions
def cosine_similarity(embedding_0, embedding_1):
dot_product = sum(a * b for a, b in zip(embedding_0, embedding_1))
norm_0 = sum(a * a for a in embedding_0) ** 0.5
norm_1 = sum(b * b for b in embedding_1) ** 0.5
return dot_product / (norm_0 * norm_1)
def generate_embedding(model, text: str, model_type: str) -> List[float]:
# Try to get from cache first
cached_embedding = get_cached_embeddings(text, model_type)
if cached_embedding is not None:
return cached_embedding
# Generate new embedding if not in cache
if model_type == "all-mpnet-base-v2":
chunk_embedding = model.encode(
text,
convert_to_tensor=True
)
embedding = np.array(t.Tensor.cpu(chunk_embedding)).tolist()
elif model_type == "text-embedding-3-small":
response = model.embeddings.create(
input=text,
model="text-embedding-3-small"
)
embedding = response.data[0].embedding
# Cache the new embedding
set_cached_embeddings(text, model_type, embedding)
return embedding
def search_query(client, st_model, query: str, df: pd.DataFrame, n: int = 1) -> List[Dict]:
# Generate embeddings for both models
mpnet_embedding = generate_embedding(st_model, query, "all-mpnet-base-v2")
openai_embedding = generate_embedding(client, query, "text-embedding-3-small")
# Calculate similarities
df['mpnet_similarities'] = df.all_mpnet_embedding.apply(
lambda x: cosine_similarity(x, mpnet_embedding)
)
df['openai_similarities'] = df.openai_embedding.apply(
lambda x: cosine_similarity(x, openai_embedding)
)
# Get top results for each model
mpnet_results = df.nlargest(n, 'mpnet_similarities')
openai_results = df.nlargest(n, 'openai_similarities')
# Format results
results = []
for _, row in mpnet_results.iterrows():
results.append({
"text": row["ext"],
"similarity": float(row["mpnet_similarities"]),
"model_type": "all-mpnet-base-v2"
})
for _, row in openai_results.iterrows():
results.append({
"text": row["ext"],
"similarity": float(row["openai_similarities"]),
"model_type": "text-embedding-3-small"
})
return results
# Authentication functions
def load_credentials():
credentials = {}
for i in range(1, 51):
username = os.environ.get(f"login_{i}")
password = os.environ.get(f"password_{i}")
if username and password:
credentials[username] = password
return credentials
def authenticate_user(username: str, password: str):
credentials_dict = load_credentials()
if username in credentials_dict and credentials_dict[username] == password:
return username
return None
def create_token(data: dict, expires_delta: timedelta, secret_key: str):
to_encode = data.copy()
expire = datetime.utcnow() + expires_delta
to_encode.update({"exp": expire})
encoded_jwt = jwt.encode(to_encode, secret_key, algorithm=ALGORITHM)
return encoded_jwt
def verify_token(token: str, secret_key: str):
credentials_exception = HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Could not validate credentials",
headers={"WWW-Authenticate": "Bearer"},
)
try:
payload = jwt.decode(token, secret_key, algorithms=[ALGORITHM])
username: str = payload.get("sub")
if username is None:
raise credentials_exception
except JWTError:
raise credentials_exception
return username
def verify_access_token(token: str = Depends(oauth2_scheme)):
return verify_token(token, SECRET_KEY)
# Endpoints
@app.get("/")
def index() -> FileResponse:
"""Serve the custom HTML page from the static directory"""
file_path = Path(__file__).parent / "static" / "index.html"
return FileResponse(path=str(file_path), media_type="text/html")
@app.post("/login", response_model=TokenResponse)
def login_app(form_data: OAuth2PasswordRequestForm = Depends()):
username = authenticate_user(form_data.username, form_data.password)
if not username:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid username or password",
headers={"WWW-Authenticate": "Bearer"},
)
access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES)
refresh_token_expires = timedelta(days=REFRESH_TOKEN_EXPIRE_DAYS)
access_token = create_token(
data={"sub": username},
expires_delta=access_token_expires,
secret_key=SECRET_KEY
)
refresh_token = create_token(
data={"sub": username},
expires_delta=refresh_token_expires,
secret_key=REFRESH_SECRET_KEY
)
return {
"access_token": access_token,
"refresh_token": refresh_token,
"token_type": "bearer"
}
@app.post("/refresh", response_model=TokenResponse)
async def refresh(refresh_request: RefreshRequest):
"""
Endpoint to refresh an access token using a valid refresh token.
Returns a new access token and the existing refresh token.
"""
try:
# Verify the refresh token
username = verify_token(refresh_request.refresh_token, REFRESH_SECRET_KEY)
# Create new access token
access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES)
access_token = create_token(
data={"sub": username},
expires_delta=access_token_expires,
secret_key=SECRET_KEY
)
return {
"access_token": access_token,
"refresh_token": refresh_request.refresh_token, # Return the same refresh token
"token_type": "bearer"
}
except JWTError:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Could not validate credentials",
headers={"WWW-Authenticate": "Bearer"},
)
@app.post("/search", response_model=List[SearchResult])
async def search(
query_input: QueryInput,
username: str = Depends(verify_access_token),
):
try:
# Initialize clients using cached functions
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
st_model = get_sentence_transformer()
df = load_dataframe()
# Perform search with both models
results = search_query(client, st_model, query_input.query, df, n=1)
return [SearchResult(**result) for result in results]
except Exception as e:
logging.error(f"Search error: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Search failed: {str(e)}"
)
@app.post("/save")
async def save_data(
save_input: SaveBatchInput,
username: str = Depends(verify_access_token)
):
try:
# Login to Hugging Face
hf_token = os.environ.get("al_ghazali_rag_retrieval_evaluation")
if not hf_token:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail="Hugging Face API token not found"
)
login(token=hf_token)
# Prepare data for saving
data = {
"user_type": [],
"username": [],
"query": [],
"retrieved_text": [],
"model_type": [],
"reaction": [],
"timestamp": []
}
# Add each item to the data dict
for item in save_input.items:
data["user_type"].append(item.user_type)
data["username"].append(item.username)
data["query"].append(item.query)
data["retrieved_text"].append(item.retrieved_text)
data["model_type"].append(item.model_type)
data["reaction"].append(item.reaction)
data["timestamp"].append(timestamp or datetime.now(timezone.utc).isoformat().replace('+00:00', 'Z'))
try:
# Load existing dataset and merge
dataset = load_dataset(
"HumbleBeeAI/al-ghazali-rag-retrieval-evaluation",
split="train"
)
existing_data = dataset.to_dict()
# Add new data
for key in data:
if key not in existing_data:
existing_data[key] = ["" if key in ["timestamp"] else None] * len(next(iter(existing_data.values())))
existing_data[key].extend(data[key])
except Exception as e:
logging.warning(f"Could not load existing dataset, creating new one: {str(e)}")
existing_data = data
# Create and push dataset
updated_dataset = Dataset.from_dict(existing_data)
updated_dataset.push_to_hub(
"HumbleBeeAI/al-ghazali-rag-retrieval-evaluation"
)
return {"message": "Data saved successfully"}
except Exception as e:
logging.error(f"Save error: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Failed to save data: {str(e)}"
)
# Make sure to keep the static files mounting
app.mount("/home", StaticFiles(directory="static", html=True), name="home")
# Startup event to create cache directory if it doesn't exist
@app.on_event("startup")
async def startup_event():
os.makedirs("./cache", exist_ok=True)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)