Spaces:
Running
Running
Commit
·
6839a40
1
Parent(s):
4c43261
"LOL"
Browse files- app.py +0 -7
- src/generation/llm.py +22 -21
app.py
CHANGED
@@ -1,12 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
from src.chatbot import RestaurantChatbot
|
3 |
-
import subprocess
|
4 |
-
|
5 |
-
command = [
|
6 |
-
"pip",
|
7 |
-
"install",
|
8 |
-
"git+https://github.com/huggingface/transformers.git@096f25ae1f501a084d8ff2dcaf25fbc2bd60eba4"
|
9 |
-
]
|
10 |
|
11 |
# Chạy lệnh và in ra stdout/stderr nếu cần
|
12 |
result = subprocess.run(command, capture_output=True, text=True)
|
|
|
1 |
import gradio as gr
|
2 |
from src.chatbot import RestaurantChatbot
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Chạy lệnh và in ra stdout/stderr nếu cần
|
5 |
result = subprocess.run(command, capture_output=True, text=True)
|
src/generation/llm.py
CHANGED
@@ -2,10 +2,9 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
2 |
from langchain_core.prompts import PromptTemplate
|
3 |
import os
|
4 |
from typing import List
|
5 |
-
import torch
|
6 |
|
7 |
class LLM:
|
8 |
-
def __init__(self, model_repo: str = "
|
9 |
local_path: str = "models"):
|
10 |
"""
|
11 |
Initialize the LLM with Qwen2-1.5B-Instruct using Hugging Face Transformers.
|
@@ -18,14 +17,19 @@ class LLM:
|
|
18 |
|
19 |
try:
|
20 |
# Load the model
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
)
|
27 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
-
self.model.to(self.device)
|
29 |
print(f"Model successfully loaded from {model_repo}")
|
30 |
except Exception as e:
|
31 |
raise RuntimeError(
|
@@ -84,22 +88,19 @@ class LLM:
|
|
84 |
messages, tokenize=False, add_generation_prompt=True
|
85 |
)
|
86 |
# Tokenize input prompt
|
87 |
-
inputs = self.tokenizer(prompt_with_template, return_tensors="pt").to(self.device)
|
88 |
# Generate text
|
89 |
-
outputs = self.
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
# Decode the generated tokens
|
97 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
98 |
print("Response generated successfully!")
|
99 |
-
|
100 |
-
if "assistant" in response:
|
101 |
-
return response.split("assistant")[-1].strip()
|
102 |
-
return response
|
103 |
except Exception as e:
|
104 |
raise RuntimeError(f"Failed to generate response: {str(e)}")
|
105 |
|
|
|
2 |
from langchain_core.prompts import PromptTemplate
|
3 |
import os
|
4 |
from typing import List
|
|
|
5 |
|
6 |
class LLM:
|
7 |
+
def __init__(self, model_repo: str = "Qwen/Qwen2-1.5B-Instruct",
|
8 |
local_path: str = "models"):
|
9 |
"""
|
10 |
Initialize the LLM with Qwen2-1.5B-Instruct using Hugging Face Transformers.
|
|
|
17 |
|
18 |
try:
|
19 |
# Load the model
|
20 |
+
self.llm = AutoModelForCausalLM.from_pretrained(
|
21 |
+
model_repo,
|
22 |
+
device_map="auto", # Automatically map to CPU
|
23 |
+
cache_dir=local_path,
|
24 |
+
trust_remote_code=True
|
25 |
+
)
|
26 |
+
|
27 |
+
# Load the tokenizer
|
28 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
29 |
+
model_repo,
|
30 |
+
cache_dir=local_path,
|
31 |
+
trust_remote_code=True
|
32 |
)
|
|
|
|
|
33 |
print(f"Model successfully loaded from {model_repo}")
|
34 |
except Exception as e:
|
35 |
raise RuntimeError(
|
|
|
88 |
messages, tokenize=False, add_generation_prompt=True
|
89 |
)
|
90 |
# Tokenize input prompt
|
91 |
+
inputs = self.tokenizer(prompt_with_template, return_tensors="pt").to(self.llm.device)
|
92 |
# Generate text
|
93 |
+
outputs = self.llm.generate(
|
94 |
+
**inputs,
|
95 |
+
max_new_tokens=max_length,
|
96 |
+
temperature=0.7,
|
97 |
+
do_sample=True,
|
98 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
99 |
+
)
|
100 |
# Decode the generated tokens
|
101 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
102 |
print("Response generated successfully!")
|
103 |
+
return response.split('assistant')[2]
|
|
|
|
|
|
|
104 |
except Exception as e:
|
105 |
raise RuntimeError(f"Failed to generate response: {str(e)}")
|
106 |
|