Spaces:
Running
Running
File size: 1,421 Bytes
9206f14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
import os
import torch
from PIL import Image
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
# Set up device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load the fine-tuned model
checkpoint_path = './checkpoint-2070' # Path to your fine-tuned model checkpoint
model = VisionEncoderDecoderModel.from_pretrained(checkpoint_path).to(device)
# Use the original model's processor (tokenizer and feature extractor)
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten")
def ocr_image(image):
"""
Perform OCR on a single image.
:param image: PIL Image object.
:return: Extracted text from the image.
"""
pixel_values = processor(image, return_tensors='pt').pixel_values.to(device)
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
# Define the Gradio interface
interface = gr.Interface(
fn=ocr_image, # Function to call for prediction
inputs=gr.inputs.Image(type="pil"), # Accept an image as input
outputs="text", # Return extracted text
title="OCR with TrOCR",
description="Upload an image, and the fine-tuned TrOCR model will extract the text for you."
)
# Launch the Gradio app
if __name__ == "__main__":
interface.launch()
|