Spaces:
Running
Running
Krish Patel
commited on
Commit
·
6b30efd
1
Parent(s):
ecb4f5b
Added api endpoint 1
Browse files
app.py
CHANGED
@@ -1,14 +1,68 @@
|
|
1 |
-
# import streamlit as st
|
2 |
-
# import torch
|
3 |
-
# from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
-
|
5 |
-
# # Load the model and tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
# # @st.cache_resource
|
7 |
# # def load_model():
|
8 |
-
# # tokenizer = AutoTokenizer.from_pretrained('microsoft/deberta-v3-small')
|
9 |
# # model = AutoModelForSequenceClassification.from_pretrained("./results/checkpoint-753")
|
10 |
# # model.eval()
|
11 |
# # return tokenizer, model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# @st.cache_resource
|
13 |
# def load_model():
|
14 |
# tokenizer = AutoTokenizer.from_pretrained('microsoft/deberta-v3-small', use_fast=False)
|
@@ -16,6 +70,7 @@
|
|
16 |
# model.eval()
|
17 |
# return tokenizer, model
|
18 |
|
|
|
19 |
# def predict_news(text, tokenizer, model):
|
20 |
# inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
21 |
# with torch.no_grad():
|
@@ -25,109 +80,94 @@
|
|
25 |
# confidence = probabilities[0][predicted_label].item()
|
26 |
# return "FAKE" if predicted_label == 1 else "REAL", confidence
|
27 |
|
28 |
-
#
|
29 |
-
#
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
32 |
# tokenizer, model = load_model()
|
33 |
-
|
34 |
-
#
|
35 |
-
#
|
36 |
-
|
37 |
-
#
|
38 |
-
|
39 |
-
#
|
40 |
-
#
|
41 |
-
|
42 |
-
#
|
43 |
-
|
44 |
-
#
|
45 |
-
#
|
46 |
-
|
47 |
-
|
48 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
# if __name__ == "__main__":
|
51 |
# main()
|
52 |
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
58 |
from pydantic import BaseModel
|
59 |
-
from
|
60 |
-
|
61 |
|
62 |
-
# FastAPI app
|
63 |
-
|
64 |
|
65 |
-
#
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
72 |
|
73 |
# Prediction function
|
74 |
-
def predict_news(text
|
75 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
76 |
with torch.no_grad():
|
77 |
outputs = model(**inputs)
|
78 |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
79 |
predicted_label = torch.argmax(probabilities, dim=-1).item()
|
80 |
confidence = probabilities[0][predicted_label].item()
|
81 |
-
return "FAKE" if predicted_label == 1 else "REAL", confidence
|
82 |
-
|
83 |
-
# FastAPI request model
|
84 |
-
class NewsInput(BaseModel):
|
85 |
-
text: str
|
86 |
-
|
87 |
-
# FastAPI route for POST requests
|
88 |
-
@api_app.post("/classify")
|
89 |
-
async def classify_news(data: NewsInput):
|
90 |
-
tokenizer, model = load_model()
|
91 |
-
prediction, confidence = predict_news(data.text, tokenizer, model)
|
92 |
return {
|
93 |
-
"prediction":
|
94 |
-
"confidence":
|
95 |
}
|
96 |
|
97 |
-
#
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
# Text input
|
106 |
-
news_text = st.text_area("Enter news text to analyze:", height=200)
|
107 |
-
|
108 |
-
if st.button("Classify"):
|
109 |
-
if news_text:
|
110 |
-
with st.spinner('Analyzing...'):
|
111 |
-
prediction, confidence = predict_news(news_text, tokenizer, model)
|
112 |
-
|
113 |
-
# Display results
|
114 |
-
if prediction == "FAKE":
|
115 |
-
st.error(f"⚠️ {prediction} NEWS")
|
116 |
-
else:
|
117 |
-
st.success(f"✅ {prediction} NEWS")
|
118 |
-
|
119 |
-
st.info(f"Confidence: {confidence*100:.2f}%")
|
120 |
-
|
121 |
-
main()
|
122 |
-
|
123 |
-
# Threaded execution for FastAPI and Streamlit
|
124 |
-
def start_fastapi():
|
125 |
-
import uvicorn
|
126 |
-
uvicorn.run(api_app, host="0.0.0.0", port=8502)
|
127 |
-
|
128 |
-
if __name__ == "__main__":
|
129 |
-
fastapi_thread = Thread(target=start_fastapi, daemon=True)
|
130 |
-
fastapi_thread.start()
|
131 |
|
132 |
-
# Start Streamlit
|
133 |
-
cli.main()
|
|
|
1 |
+
# # import streamlit as st
|
2 |
+
# # import torch
|
3 |
+
# # from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
|
5 |
+
# # # Load the model and tokenizer
|
6 |
+
# # # @st.cache_resource
|
7 |
+
# # # def load_model():
|
8 |
+
# # # tokenizer = AutoTokenizer.from_pretrained('microsoft/deberta-v3-small')
|
9 |
+
# # # model = AutoModelForSequenceClassification.from_pretrained("./results/checkpoint-753")
|
10 |
+
# # # model.eval()
|
11 |
+
# # # return tokenizer, model
|
12 |
# # @st.cache_resource
|
13 |
# # def load_model():
|
14 |
+
# # tokenizer = AutoTokenizer.from_pretrained('microsoft/deberta-v3-small', use_fast=False)
|
15 |
# # model = AutoModelForSequenceClassification.from_pretrained("./results/checkpoint-753")
|
16 |
# # model.eval()
|
17 |
# # return tokenizer, model
|
18 |
+
|
19 |
+
# # def predict_news(text, tokenizer, model):
|
20 |
+
# # inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
21 |
+
# # with torch.no_grad():
|
22 |
+
# # outputs = model(**inputs)
|
23 |
+
# # probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
24 |
+
# # predicted_label = torch.argmax(probabilities, dim=-1).item()
|
25 |
+
# # confidence = probabilities[0][predicted_label].item()
|
26 |
+
# # return "FAKE" if predicted_label == 1 else "REAL", confidence
|
27 |
+
|
28 |
+
# # def main():
|
29 |
+
# # st.title("News Classifier")
|
30 |
+
|
31 |
+
# # # Load model
|
32 |
+
# # tokenizer, model = load_model()
|
33 |
+
|
34 |
+
# # # Text input
|
35 |
+
# # news_text = st.text_area("Enter news text to analyze:", height=200)
|
36 |
+
|
37 |
+
# # if st.button("Classify"):
|
38 |
+
# # if news_text:
|
39 |
+
# # with st.spinner('Analyzing...'):
|
40 |
+
# # prediction, confidence = predict_news(news_text, tokenizer, model)
|
41 |
+
|
42 |
+
# # # Display results
|
43 |
+
# # if prediction == "FAKE":
|
44 |
+
# # st.error(f"⚠️ {prediction} NEWS")
|
45 |
+
# # else:
|
46 |
+
# # st.success(f"✅ {prediction} NEWS")
|
47 |
+
|
48 |
+
# # st.info(f"Confidence: {confidence*100:.2f}%")
|
49 |
+
|
50 |
+
# # if __name__ == "__main__":
|
51 |
+
# # main()
|
52 |
+
|
53 |
+
|
54 |
+
# import streamlit as st
|
55 |
+
# import torch
|
56 |
+
# from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
57 |
+
# from fastapi import FastAPI, Request
|
58 |
+
# from pydantic import BaseModel
|
59 |
+
# from threading import Thread
|
60 |
+
# from streamlit.web import cli
|
61 |
+
|
62 |
+
# # FastAPI app
|
63 |
+
# api_app = FastAPI()
|
64 |
+
|
65 |
+
# # Load the model and tokenizer
|
66 |
# @st.cache_resource
|
67 |
# def load_model():
|
68 |
# tokenizer = AutoTokenizer.from_pretrained('microsoft/deberta-v3-small', use_fast=False)
|
|
|
70 |
# model.eval()
|
71 |
# return tokenizer, model
|
72 |
|
73 |
+
# # Prediction function
|
74 |
# def predict_news(text, tokenizer, model):
|
75 |
# inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
76 |
# with torch.no_grad():
|
|
|
80 |
# confidence = probabilities[0][predicted_label].item()
|
81 |
# return "FAKE" if predicted_label == 1 else "REAL", confidence
|
82 |
|
83 |
+
# # FastAPI request model
|
84 |
+
# class NewsInput(BaseModel):
|
85 |
+
# text: str
|
86 |
+
|
87 |
+
# # FastAPI route for POST requests
|
88 |
+
# @api_app.post("/classify")
|
89 |
+
# async def classify_news(data: NewsInput):
|
90 |
# tokenizer, model = load_model()
|
91 |
+
# prediction, confidence = predict_news(data.text, tokenizer, model)
|
92 |
+
# return {
|
93 |
+
# "prediction": prediction,
|
94 |
+
# "confidence": f"{confidence*100:.2f}%"
|
95 |
+
# }
|
96 |
+
|
97 |
+
# # Streamlit app
|
98 |
+
# def run_streamlit():
|
99 |
+
# def main():
|
100 |
+
# st.title("News Classifier")
|
101 |
+
|
102 |
+
# # Load model
|
103 |
+
# tokenizer, model = load_model()
|
104 |
+
|
105 |
+
# # Text input
|
106 |
+
# news_text = st.text_area("Enter news text to analyze:", height=200)
|
107 |
+
|
108 |
+
# if st.button("Classify"):
|
109 |
+
# if news_text:
|
110 |
+
# with st.spinner('Analyzing...'):
|
111 |
+
# prediction, confidence = predict_news(news_text, tokenizer, model)
|
112 |
+
|
113 |
+
# # Display results
|
114 |
+
# if prediction == "FAKE":
|
115 |
+
# st.error(f"⚠️ {prediction} NEWS")
|
116 |
+
# else:
|
117 |
+
# st.success(f"✅ {prediction} NEWS")
|
118 |
+
|
119 |
+
# st.info(f"Confidence: {confidence*100:.2f}%")
|
120 |
|
|
|
121 |
# main()
|
122 |
|
123 |
+
# # Threaded execution for FastAPI and Streamlit
|
124 |
+
# def start_fastapi():
|
125 |
+
# import uvicorn
|
126 |
+
# uvicorn.run(api_app, host="0.0.0.0", port=8502)
|
127 |
|
128 |
+
# if __name__ == "__main__":
|
129 |
+
# fastapi_thread = Thread(target=start_fastapi, daemon=True)
|
130 |
+
# fastapi_thread.start()
|
131 |
+
|
132 |
+
# # Start Streamlit
|
133 |
+
# cli.main()
|
134 |
+
|
135 |
+
from fastapi import FastAPI, HTTPException
|
136 |
from pydantic import BaseModel
|
137 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
138 |
+
import torch
|
139 |
|
140 |
+
# Define the FastAPI app
|
141 |
+
app = FastAPI()
|
142 |
|
143 |
+
# Define the input data schema
|
144 |
+
class InputText(BaseModel):
|
145 |
+
text: str
|
146 |
+
|
147 |
+
# Load the model and tokenizer (ensure these paths are correct in your Space)
|
148 |
+
tokenizer = AutoTokenizer.from_pretrained('microsoft/deberta-v3-small', use_fast=False)
|
149 |
+
model = AutoModelForSequenceClassification.from_pretrained("./results/checkpoint-753")
|
150 |
+
model.eval()
|
151 |
|
152 |
# Prediction function
|
153 |
+
def predict_news(text: str):
|
154 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
155 |
with torch.no_grad():
|
156 |
outputs = model(**inputs)
|
157 |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
158 |
predicted_label = torch.argmax(probabilities, dim=-1).item()
|
159 |
confidence = probabilities[0][predicted_label].item()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
return {
|
161 |
+
"prediction": "FAKE" if predicted_label == 1 else "REAL",
|
162 |
+
"confidence": round(confidence * 100, 2) # Return confidence as a percentage
|
163 |
}
|
164 |
|
165 |
+
# Define the POST endpoint
|
166 |
+
@app.post("/predict")
|
167 |
+
async def classify_news(input_text: InputText):
|
168 |
+
try:
|
169 |
+
result = predict_news(input_text.text)
|
170 |
+
return result
|
171 |
+
except Exception as e:
|
172 |
+
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
|
|
|