seawolf2357's picture
Update app.py
ee3d852 verified
raw
history blame
19.1 kB
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
import logging
import gc
import time
import hashlib
from dataclasses import dataclass
from typing import Optional, Tuple
from functools import wraps
import threading
import os
# GPU ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ ์„ค์ •
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:256' # ๋” ์ž‘์€ ์ฒญํฌ ์‚ฌ์šฉ
# ๋กœ๊น… ์„ค์ •
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ์„ค์ • ๊ด€๋ฆฌ
@dataclass
class VideoGenerationConfig:
model_id: str = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
lora_repo_id: str = "Kijai/WanVideo_comfy"
lora_filename: str = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
mod_value: int = 32
# Zero GPU๋ฅผ ์œ„ํ•œ ๋ณด์ˆ˜์ ์ธ ๊ธฐ๋ณธ๊ฐ’
default_height: int = 384
default_width: int = 384
max_area: float = 384.0 * 384.0 # Zero GPU์— ์ตœ์ ํ™”
slider_min_h: int = 128
slider_max_h: int = 640 # ๋” ๋‚ฎ์€ ์ตœ๋Œ€๊ฐ’
slider_min_w: int = 128
slider_max_w: int = 640 # ๋” ๋‚ฎ์€ ์ตœ๋Œ€๊ฐ’
fixed_fps: int = 24
min_frames: int = 8
max_frames: int = 36 # ๋” ๋‚ฎ์€ ์ตœ๋Œ€ ํ”„๋ ˆ์ž„
default_prompt: str = "make this image come alive, cinematic motion"
default_negative_prompt: str = "static, blurred, low quality"
# GPU ๋ฉ”๋ชจ๋ฆฌ ์ตœ์ ํ™” ์„ค์ •
enable_model_cpu_offload: bool = True
enable_vae_slicing: bool = True
enable_vae_tiling: bool = True
@property
def max_duration(self):
"""์ตœ๋Œ€ ํ—ˆ์šฉ duration (์ดˆ)"""
return self.max_frames / self.fixed_fps
@property
def min_duration(self):
"""์ตœ์†Œ ํ—ˆ์šฉ duration (์ดˆ)"""
return self.min_frames / self.fixed_fps
config = VideoGenerationConfig()
MAX_SEED = np.iinfo(np.int32).max
# ๊ธ€๋กœ๋ฒŒ ๋ณ€์ˆ˜
pipe = None
generation_lock = threading.Lock()
# ์„ฑ๋Šฅ ์ธก์ • ๋ฐ์ฝ”๋ ˆ์ดํ„ฐ
def measure_time(func):
@wraps(func)
def wrapper(*args, **kwargs):
start = time.time()
result = func(*args, **kwargs)
logger.info(f"{func.__name__} took {time.time()-start:.2f}s")
return result
return wrapper
# GPU ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ ํ•จ์ˆ˜
def clear_gpu_memory():
"""๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ (Zero GPU ์•ˆ์ „)"""
gc.collect()
if torch.cuda.is_available():
try:
torch.cuda.empty_cache()
torch.cuda.synchronize()
except:
pass
# ๋น„๋””์˜ค ์ƒ์„ฑ๊ธฐ ํด๋ž˜์Šค
class VideoGenerator:
def __init__(self, config: VideoGenerationConfig):
self.config = config
def calculate_dimensions(self, image: Image.Image) -> Tuple[int, int]:
orig_w, orig_h = image.size
if orig_w <= 0 or orig_h <= 0:
return self.config.default_height, self.config.default_width
aspect_ratio = orig_h / orig_w
# Zero GPU์— ์ตœ์ ํ™”๋œ ์ž‘์€ ํ•ด์ƒ๋„
max_area = 384.0 * 384.0
calc_h = round(np.sqrt(max_area * aspect_ratio))
calc_w = round(np.sqrt(max_area / aspect_ratio))
calc_h = max(self.config.mod_value, (calc_h // self.config.mod_value) * self.config.mod_value)
calc_w = max(self.config.mod_value, (calc_w // self.config.mod_value) * self.config.mod_value)
# ์ตœ๋Œ€ 640์œผ๋กœ ์ œํ•œ
new_h = int(np.clip(calc_h, self.config.slider_min_h, 640))
new_w = int(np.clip(calc_w, self.config.slider_min_w, 640))
# mod_value์— ๋งž์ถค
new_h = (new_h // self.config.mod_value) * self.config.mod_value
new_w = (new_w // self.config.mod_value) * self.config.mod_value
return new_h, new_w
def validate_inputs(self, image: Image.Image, prompt: str, height: int,
width: int, duration: float, steps: int) -> Tuple[bool, Optional[str]]:
if image is None:
return False, "๐Ÿ–ผ๏ธ Please upload an input image"
if not prompt or len(prompt.strip()) == 0:
return False, "โœ๏ธ Please provide a prompt"
if len(prompt) > 300: # ๋” ์งง์€ ํ”„๋กฌํ”„ํŠธ ์ œํ•œ
return False, "โš ๏ธ Prompt is too long (max 300 characters)"
# Zero GPU์— ์ตœ์ ํ™”๋œ ์ œํ•œ
if duration < 0.3:
return False, "โฑ๏ธ Duration too short (min 0.3s)"
if duration > 1.5:
return False, "โฑ๏ธ Duration too long (max 1.5s for stability)"
# ํ”ฝ์…€ ์ˆ˜ ์ œํ•œ (384x384 = 147,456 ํ”ฝ์…€)
max_pixels = 384 * 384
if height * width > max_pixels:
return False, f"๐Ÿ“ Total pixels limited to {max_pixels:,} (e.g., 384ร—384)"
if height > 640 or width > 640:
return False, "๐Ÿ“ Maximum dimension is 640 pixels"
if steps > 6:
return False, "๐Ÿ”ง Maximum 6 steps in Zero GPU environment"
return True, None
def generate_unique_filename(self, seed: int) -> str:
timestamp = int(time.time())
unique_str = f"{timestamp}_{seed}_{random.randint(1000, 9999)}"
hash_obj = hashlib.md5(unique_str.encode())
return f"video_{hash_obj.hexdigest()[:8]}.mp4"
video_generator = VideoGenerator(config)
# Gradio ํ•จ์ˆ˜๋“ค
def handle_image_upload(image):
if image is None:
return gr.update(value=config.default_height), gr.update(value=config.default_width)
try:
if not isinstance(image, Image.Image):
raise ValueError("Invalid image format")
new_h, new_w = video_generator.calculate_dimensions(image)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
logger.error(f"Error processing image: {e}")
gr.Warning("โš ๏ธ Error processing image")
return gr.update(value=config.default_height), gr.update(value=config.default_width)
def get_duration(input_image, prompt, height, width, negative_prompt,
duration_seconds, guidance_scale, steps, seed, randomize_seed, progress):
# Zero GPU ํ™˜๊ฒฝ์—์„œ ๋งค์šฐ ๋ณด์ˆ˜์ ์ธ ์‹œ๊ฐ„ ํ• ๋‹น
base_duration = 40 # ๊ธฐ๋ณธ 40์ดˆ
# ํ”ฝ์…€ ์ˆ˜์— ๋”ฐ๋ฅธ ์ถ”๊ฐ€ ์‹œ๊ฐ„
pixels = height * width
if pixels > 200000: # 448x448 ์ด์ƒ
base_duration += 20
elif pixels > 147456: # 384x384 ์ด์ƒ
base_duration += 10
# ์Šคํ… ์ˆ˜์— ๋”ฐ๋ฅธ ์ถ”๊ฐ€ ์‹œ๊ฐ„
if steps > 4:
base_duration += 10
# ์ตœ๋Œ€ 70์ดˆ๋กœ ์ œํ•œ (Zero GPU์˜ ์•ˆ์ „ํ•œ ํ•œ๊ณ„)
return min(base_duration, 70)
@spaces.GPU(duration=get_duration)
@measure_time
def generate_video(input_image, prompt, height, width,
negative_prompt=config.default_negative_prompt,
duration_seconds=1.0, guidance_scale=1, steps=3,
seed=42, randomize_seed=False,
progress=gr.Progress(track_tqdm=True)):
global pipe
# ๋™์‹œ ์‹คํ–‰ ๋ฐฉ์ง€
if not generation_lock.acquire(blocking=False):
raise gr.Error("โณ Another video is being generated. Please wait...")
try:
progress(0.05, desc="๐Ÿ” Validating inputs...")
logger.info(f"Starting generation - Resolution: {height}x{width}, Duration: {duration_seconds}s, Steps: {steps}")
# ์ž…๋ ฅ ๊ฒ€์ฆ
is_valid, error_msg = video_generator.validate_inputs(
input_image, prompt, height, width, duration_seconds, steps
)
if not is_valid:
raise gr.Error(error_msg)
# ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ
clear_gpu_memory()
progress(0.1, desc="๐Ÿš€ Loading model...")
# ๋ชจ๋ธ ๋กœ๋”ฉ (GPU ํ•จ์ˆ˜ ๋‚ด์—์„œ)
if pipe is None:
try:
# ์ปดํฌ๋„ŒํŠธ ๋กœ๋“œ
image_encoder = CLIPVisionModel.from_pretrained(
config.model_id,
subfolder="image_encoder",
torch_dtype=torch.float16,
low_cpu_mem_usage=True
)
vae = AutoencoderKLWan.from_pretrained(
config.model_id,
subfolder="vae",
torch_dtype=torch.float16,
low_cpu_mem_usage=True
)
pipe = WanImageToVideoPipeline.from_pretrained(
config.model_id,
vae=vae,
image_encoder=image_encoder,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_safetensors=True
)
# ์Šค์ผ€์ค„๋Ÿฌ ์„ค์ •
pipe.scheduler = UniPCMultistepScheduler.from_config(
pipe.scheduler.config, flow_shift=8.0
)
# LoRA ๋กœ๋“œ (์„ ํƒ์ )
try:
causvid_path = hf_hub_download(
repo_id=config.lora_repo_id, filename=config.lora_filename
)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
pipe.fuse_lora()
except:
logger.warning("LoRA loading skipped")
# GPU๋กœ ์ด๋™
pipe.to("cuda")
# ์ตœ์ ํ™” ํ™œ์„ฑํ™”
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
# xFormers ์‹œ๋„
try:
pipe.enable_xformers_memory_efficient_attention()
except:
pass
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Model loading failed: {e}")
raise gr.Error("Failed to load model")
progress(0.3, desc="๐ŸŽฏ Preparing image...")
# ์ด๋ฏธ์ง€ ์ค€๋น„
target_h = max(config.mod_value, (int(height) // config.mod_value) * config.mod_value)
target_w = max(config.mod_value, (int(width) // config.mod_value) * config.mod_value)
# ํ”„๋ ˆ์ž„ ์ˆ˜ ๊ณ„์‚ฐ (๋งค์šฐ ๋ณด์ˆ˜์ )
num_frames = min(
int(round(duration_seconds * config.fixed_fps)),
36 # ์ตœ๋Œ€ 36ํ”„๋ ˆ์ž„ (1.5์ดˆ)
)
num_frames = max(8, num_frames) # ์ตœ์†Œ 8ํ”„๋ ˆ์ž„
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
# ์ด๋ฏธ์ง€ ๋ฆฌ์‚ฌ์ด์ฆˆ
resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
progress(0.4, desc="๐ŸŽฌ Generating video...")
# ๋น„๋””์˜ค ์ƒ์„ฑ
with torch.inference_mode(), torch.amp.autocast('cuda', enabled=True):
try:
# ์งง์€ ํƒ€์ž„์•„์›ƒ์œผ๋กœ ์ƒ์„ฑ
output_frames_list = pipe(
image=resized_image,
prompt=prompt[:200], # ํ”„๋กฌํ”„ํŠธ ๊ธธ์ด ์ œํ•œ
negative_prompt=negative_prompt[:100], # ๋„ค๊ฑฐํ‹ฐ๋ธŒ ํ”„๋กฌํ”„ํŠธ๋„ ์ œํ•œ
height=target_h,
width=target_w,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
return_dict=True
).frames[0]
except torch.cuda.OutOfMemoryError:
clear_gpu_memory()
raise gr.Error("๐Ÿ’พ GPU out of memory. Try smaller dimensions.")
except Exception as e:
logger.error(f"Generation error: {e}")
raise gr.Error(f"โŒ Generation failed: {str(e)[:100]}")
progress(0.9, desc="๐Ÿ’พ Saving video...")
# ๋น„๋””์˜ค ์ €์žฅ
filename = video_generator.generate_unique_filename(current_seed)
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=config.fixed_fps)
progress(1.0, desc="โœจ Complete!")
logger.info(f"Video generated: {num_frames} frames, {target_h}x{target_w}")
# ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ
del output_frames_list
del resized_image
clear_gpu_memory()
return video_path, current_seed
except gr.Error:
raise
except Exception as e:
logger.error(f"Unexpected error: {e}")
raise gr.Error(f"โŒ Error: {str(e)[:100]}")
finally:
generation_lock.release()
clear_gpu_memory()
# CSS
css = """
.container {
max-width: 1000px;
margin: auto;
padding: 20px;
}
.header {
text-align: center;
margin-bottom: 20px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 30px;
border-radius: 15px;
color: white;
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.header h1 {
font-size: 2.5em;
margin-bottom: 10px;
}
.warning-box {
background: #fff3cd;
border: 1px solid #ffeaa7;
border-radius: 8px;
padding: 12px;
margin: 10px 0;
color: #856404;
font-size: 0.9em;
}
.generate-btn {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
font-size: 1.2em;
padding: 12px 30px;
border-radius: 25px;
border: none;
cursor: pointer;
width: 100%;
margin-top: 15px;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4);
}
"""
# Gradio UI
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_classes="container"):
# Header
gr.HTML("""
<div class="header">
<h1>๐ŸŽฌ AI Video Generator</h1>
<p>Transform images into videos with Wan 2.1 (Zero GPU Optimized)</p>
</div>
""")
# ๊ฒฝ๊ณ 
gr.HTML("""
<div class="warning-box">
<strong>โšก Zero GPU Limitations:</strong>
<ul style="margin: 5px 0; padding-left: 20px;">
<li>Max resolution: 384ร—384 (recommended)</li>
<li>Max duration: 1.5 seconds</li>
<li>Max steps: 6 (3-4 recommended)</li>
<li>Processing time: ~40-60 seconds</li>
</ul>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
type="pil",
label="๐Ÿ–ผ๏ธ Upload Image"
)
prompt_input = gr.Textbox(
label="โœจ Animation Prompt",
value=config.default_prompt,
placeholder="Describe the motion...",
lines=2,
max_lines=3
)
duration_input = gr.Slider(
minimum=0.3,
maximum=1.5,
step=0.1,
value=1.0,
label="โฑ๏ธ Duration (seconds)"
)
with gr.Accordion("โš™๏ธ Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=config.default_negative_prompt,
lines=1
)
with gr.Row():
height_slider = gr.Slider(
minimum=128,
maximum=640,
step=32,
value=384,
label="Height"
)
width_slider = gr.Slider(
minimum=128,
maximum=640,
step=32,
value=384,
label="Width"
)
steps_slider = gr.Slider(
minimum=1,
maximum=6,
step=1,
value=3,
label="Steps (3-4 recommended)"
)
with gr.Row():
seed = gr.Slider(
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
label="Seed"
)
randomize_seed = gr.Checkbox(
label="Random",
value=True
)
guidance_scale = gr.Slider(
minimum=0.0,
maximum=5.0,
step=0.5,
value=1.0,
label="Guidance Scale",
visible=False
)
generate_btn = gr.Button(
"๐ŸŽฌ Generate Video",
variant="primary",
elem_classes="generate-btn"
)
with gr.Column(scale=1):
video_output = gr.Video(
label="Generated Video",
autoplay=True
)
gr.Markdown("""
### ๐Ÿ’ก Tips:
- Use 384ร—384 for best results
- Keep prompts simple and clear
- 3-4 steps is optimal
- Wait for completion before next generation
""")
# Event handlers
input_image.upload(
fn=handle_image_upload,
inputs=[input_image],
outputs=[height_slider, width_slider]
)
generate_btn.click(
fn=generate_video,
inputs=[
input_image, prompt_input, height_slider, width_slider,
negative_prompt, duration_input, guidance_scale,
steps_slider, seed, randomize_seed
],
outputs=[video_output, seed]
)
if __name__ == "__main__":
logger.info("Starting app in Zero GPU environment")
demo.queue(max_size=2) # ์ž‘์€ ํ ์‚ฌ์ด์ฆˆ
demo.launch()