|
import torch |
|
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler |
|
from diffusers.utils import export_to_video |
|
from transformers import CLIPVisionModel |
|
import gradio as gr |
|
import tempfile |
|
import spaces |
|
from huggingface_hub import hf_hub_download |
|
import logging |
|
import numpy as np |
|
from PIL import Image |
|
import random |
|
|
|
|
|
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers" |
|
LORA_REPO_ID = "Kijai/WanVideo_comfy" |
|
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors" |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
logger.info(f"Loading Image Encoder for {MODEL_ID}...") |
|
image_encoder = CLIPVisionModel.from_pretrained( |
|
MODEL_ID, |
|
subfolder="image_encoder", |
|
torch_dtype=torch.float32 |
|
) |
|
|
|
logger.info(f"Loading VAE for {MODEL_ID}...") |
|
vae = AutoencoderKLWan.from_pretrained( |
|
MODEL_ID, |
|
subfolder="vae", |
|
torch_dtype=torch.float32 |
|
) |
|
logger.info(f"Loading Pipeline {MODEL_ID}...") |
|
pipe = WanImageToVideoPipeline.from_pretrained( |
|
MODEL_ID, |
|
vae=vae, |
|
image_encoder=image_encoder, |
|
torch_dtype=torch.bfloat16 |
|
) |
|
flow_shift = 8.0 |
|
pipe.scheduler = UniPCMultistepScheduler.from_config( |
|
pipe.scheduler.config, flow_shift=flow_shift |
|
) |
|
logger.info("Moving pipeline to CUDA...") |
|
pipe.to("cuda") |
|
|
|
|
|
logger.info(f"Downloading LoRA {LORA_FILENAME} from {LORA_REPO_ID}...") |
|
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME) |
|
|
|
logger.info("Loading LoRA weights...") |
|
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora") |
|
logger.info("Setting LoRA adapter...") |
|
pipe.set_adapters(["causvid_lora"], adapter_weights=[1.0]) |
|
|
|
|
|
MOD_VALUE = 32 |
|
MOD_VALUE_H = MOD_VALUE_W = MOD_VALUE |
|
|
|
DEFAULT_H_SLIDER_VALUE = 512 |
|
DEFAULT_W_SLIDER_VALUE = 896 |
|
|
|
|
|
NEW_FORMULA_MAX_AREA = float(480 * 832) |
|
|
|
SLIDER_MIN_H = 128 |
|
SLIDER_MAX_H = 896 |
|
SLIDER_MIN_W = 128 |
|
SLIDER_MAX_W = 896 |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
def _calculate_new_dimensions_wan(pil_image: Image.Image, mod_val: int, calculation_max_area: float, |
|
min_slider_h: int, max_slider_h: int, |
|
min_slider_w: int, max_slider_w: int, |
|
default_h: int, default_w: int) -> tuple[int, int]: |
|
orig_w, orig_h = pil_image.size |
|
|
|
if orig_w <= 0 or orig_h <= 0: |
|
logger.warning(f"Uploaded image has non-positive width or height ({orig_w}x{orig_h}). Using default slider dimensions.") |
|
return default_h, default_w |
|
|
|
aspect_ratio = orig_h / orig_w |
|
|
|
sqrt_h_term = np.sqrt(calculation_max_area * aspect_ratio) |
|
sqrt_w_term = np.sqrt(calculation_max_area / aspect_ratio) |
|
|
|
calc_h = round(sqrt_h_term) // mod_val * mod_val |
|
calc_w = round(sqrt_w_term) // mod_val * mod_val |
|
|
|
calc_h = mod_val if calc_h < mod_val else calc_h |
|
calc_w = mod_val if calc_w < mod_val else calc_w |
|
|
|
effective_min_h = min_slider_h |
|
effective_min_w = min_slider_w |
|
|
|
effective_max_h_from_slider = (max_slider_h // mod_val) * mod_val |
|
effective_max_w_from_slider = (max_slider_w // mod_val) * mod_val |
|
|
|
new_h = int(np.clip(calc_h, effective_min_h, effective_max_h_from_slider)) |
|
new_w = int(np.clip(calc_w, effective_min_w, effective_max_w_from_slider)) |
|
|
|
logger.info(f"Auto-dim: Original {orig_w}x{orig_h} (AR: {aspect_ratio:.2f}). Max Area for calc: {calculation_max_area}.") |
|
logger.info(f"Auto-dim: Sqrt terms HxW: {sqrt_h_term:.0f}x{sqrt_w_term:.0f}. Calculated (round(sqrt_term)//{mod_val}*{mod_val}): {calc_h}x{calc_w}.") |
|
logger.info(f"Auto-dim: Clamped HxW: {new_h}x{new_w} (Effective H_range:[{effective_min_h}-{effective_max_h_from_slider}], Effective W_range:[{effective_min_w}-{effective_max_w_from_slider}]).") |
|
|
|
return new_h, new_w |
|
|
|
def handle_image_upload_for_dims_wan(uploaded_pil_image: Image.Image | None, current_h_val: int, current_w_val: int): |
|
if uploaded_pil_image is None: |
|
logger.info("Image cleared. Resetting dimensions to default slider values.") |
|
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) |
|
try: |
|
new_h, new_w = _calculate_new_dimensions_wan( |
|
uploaded_pil_image, |
|
MOD_VALUE, |
|
NEW_FORMULA_MAX_AREA, |
|
SLIDER_MIN_H, SLIDER_MAX_H, |
|
SLIDER_MIN_W, SLIDER_MAX_W, |
|
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE |
|
) |
|
return gr.update(value=new_h), gr.update(value=new_w) |
|
except Exception as e: |
|
logger.error(f"Error auto-adjusting H/W from image: {e}", exc_info=True) |
|
|
|
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) |
|
|
|
|
|
|
|
@spaces.GPU |
|
def generate_video(input_image: Image.Image, prompt: str, negative_prompt: str, |
|
height: int, width: int, duration_seconds: float, |
|
guidance_scale: float, steps: int, |
|
seed: int, randomize_seed: bool, |
|
progress=gr.Progress(track_tqdm=True)): |
|
if input_image is None: |
|
raise gr.Error("Please upload an input image.") |
|
|
|
|
|
FIXED_FPS = 24 |
|
MIN_FRAMES_MODEL = 8 |
|
MAX_FRAMES_MODEL = 81 |
|
|
|
logger.info("Starting video generation...") |
|
logger.info(f" Input Image: Uploaded (Original size: {input_image.size if input_image else 'N/A'})") |
|
logger.info(f" Prompt: {prompt}") |
|
logger.info(f" Negative Prompt: {negative_prompt if negative_prompt else 'None'}") |
|
logger.info(f" Target Output Height: {height}, Target Output Width: {width}") |
|
|
|
target_height = int(height) |
|
target_width = int(width) |
|
guidance_scale_val = float(guidance_scale) |
|
steps_val = int(steps) |
|
|
|
num_frames_for_pipeline = int(round(duration_seconds * FIXED_FPS)) |
|
num_frames_for_pipeline = max(MIN_FRAMES_MODEL, min(MAX_FRAMES_MODEL, num_frames_for_pipeline)) |
|
if num_frames_for_pipeline < MIN_FRAMES_MODEL: |
|
num_frames_for_pipeline = MIN_FRAMES_MODEL |
|
|
|
logger.info(f" Duration: {duration_seconds:.1f}s, Fixed FPS (conditioning & export): {FIXED_FPS}") |
|
logger.info(f" Calculated Num Frames: {num_frames_for_pipeline} (clamped to [{MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL}])") |
|
logger.info(f" Guidance Scale: {guidance_scale_val}, Steps: {steps_val}") |
|
|
|
|
|
current_seed = int(seed) |
|
if randomize_seed: |
|
current_seed = random.randint(0, MAX_SEED) |
|
logger.info(f" Initial Seed: {seed}, Randomize: {randomize_seed}, Using Seed: {current_seed}") |
|
|
|
|
|
if target_height % MOD_VALUE_H != 0: |
|
logger.warning(f"Height {target_height} is not a multiple of {MOD_VALUE_H}. Adjusting...") |
|
target_height = (target_height // MOD_VALUE_H) * MOD_VALUE_H |
|
if target_width % MOD_VALUE_W != 0: |
|
logger.warning(f"Width {target_width} is not a multiple of {MOD_VALUE_W}. Adjusting...") |
|
target_width = (target_width // MOD_VALUE_W) * MOD_VALUE_W |
|
|
|
target_height = max(MOD_VALUE_H, target_height if target_height > 0 else MOD_VALUE_H) |
|
target_width = max(MOD_VALUE_W, target_width if target_width > 0 else MOD_VALUE_W) |
|
|
|
|
|
resized_image = input_image.resize((target_width, target_height)) |
|
logger.info(f" Input image resized to: {resized_image.size} for pipeline input.") |
|
|
|
with torch.inference_mode(): |
|
output_frames_list = pipe( |
|
image=resized_image, |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
height=target_height, |
|
width=target_width, |
|
num_frames=num_frames_for_pipeline, |
|
guidance_scale=guidance_scale_val, |
|
num_inference_steps=steps_val, |
|
generator=torch.Generator(device="cuda").manual_seed(current_seed) |
|
).frames[0] |
|
|
|
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: |
|
video_path = tmpfile.name |
|
|
|
export_to_video(output_frames_list, video_path, fps=FIXED_FPS) |
|
logger.info(f"Video successfully generated and saved to {video_path}") |
|
return video_path |
|
|
|
|
|
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation" |
|
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature" |
|
penguin_image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/penguin.png" |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(f""" |
|
# Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA |
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image_component = gr.Image(type="pil", label="Input Image (will be resized to target H/W)") |
|
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v, lines=3) |
|
duration_seconds_input = gr.Slider(minimum=0.4, maximum=3.3, step=0.1, value=1.7, label="Duration (seconds)", info="The CausVid LoRA was trained on 24fps, Wan has 81 maximum frames limit, limiting the maximum to 3.3s") |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt_input = gr.Textbox( |
|
label="Negative Prompt (Optional)", |
|
value=default_negative_prompt, |
|
lines=3 |
|
) |
|
|
|
seed_input = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=42, |
|
interactive=True |
|
) |
|
randomize_seed_checkbox = gr.Checkbox( |
|
label="Randomize seed", |
|
value=True, |
|
interactive=True |
|
) |
|
|
|
with gr.Row(): |
|
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})") |
|
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})") |
|
|
|
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps") |
|
guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False) |
|
|
|
generate_button = gr.Button("Generate Video", variant="primary") |
|
|
|
with gr.Column(): |
|
video_output = gr.Video(label="Generated Video", interactive=False) |
|
|
|
input_image_component.upload( |
|
fn=handle_image_upload_for_dims_wan, |
|
inputs=[input_image_component, height_input, width_input], |
|
outputs=[height_input, width_input] |
|
) |
|
input_image_component.clear( |
|
fn=handle_image_upload_for_dims_wan, |
|
inputs=[input_image_component, height_input, width_input], |
|
outputs=[height_input, width_input] |
|
) |
|
|
|
inputs_for_click_and_examples = [ |
|
input_image_component, |
|
prompt_input, |
|
negative_prompt_input, |
|
height_input, |
|
width_input, |
|
duration_seconds_input, |
|
guidance_scale_input, |
|
steps_slider, |
|
seed_input, |
|
randomize_seed_checkbox |
|
] |
|
|
|
generate_button.click( |
|
fn=generate_video, |
|
inputs=inputs_for_click_and_examples, |
|
outputs=video_output |
|
) |
|
|
|
gr.Examples( |
|
examples=[ |
|
|
|
["peng.png", "a penguin playfully dancing in the snow, Antarctica", default_negative_prompt, 896, 512, 2, 1.0, 4, 42, False], |
|
["forg.jpg", "the frog jumps around", default_negative_prompt, 448, 832, 2, 1.0, 4, 123, False], |
|
], |
|
inputs=inputs_for_click_and_examples, |
|
outputs=video_output, |
|
fn=generate_video, |
|
cache_examples="lazy" |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue().launch(share=True, debug=True) |