File size: 15,938 Bytes
5f364b5
f4cf641
c103ac7
f4cf641
5f364b5
 
c103ac7
5f364b5
f4cf641
12d6cf5
8268b44
5f364b5
bfa6fb3
 
 
 
afae83c
 
 
 
 
 
 
 
 
 
 
 
 
bfa6fb3
093d0ab
 
bfa6fb3
8116465
bfa6fb3
 
ec4cebf
8116465
bfa6fb3
 
093d0ab
bfa6fb3
 
afae83c
 
 
 
 
 
 
 
 
 
 
bfa6fb3
afae83c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfa6fb3
afae83c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfa6fb3
 
 
 
 
 
 
 
 
 
8268b44
bfa6fb3
 
 
 
 
 
 
 
ec4cebf
bfa6fb3
 
 
 
 
f4cf641
bfa6fb3
 
 
 
 
f4cf641
 
bfa6fb3
 
 
 
 
 
 
 
afae83c
 
 
 
bfa6fb3
afae83c
1b75f51
 
8116465
bfa6fb3
 
 
1e531a7
8268b44
bfa6fb3
 
 
 
 
 
 
 
 
 
afae83c
bfa6fb3
afae83c
 
 
 
 
 
 
bfa6fb3
 
 
 
 
ec4cebf
afae83c
 
 
fe14409
 
 
 
 
 
 
 
 
 
 
 
ec4cebf
afae83c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c68ae83
afae83c
 
 
 
 
bfa6fb3
afae83c
 
 
 
 
 
 
bfa6fb3
afae83c
 
 
 
ec4cebf
c68ae83
afae83c
 
 
 
 
 
c68ae83
afae83c
 
 
 
 
 
bfa6fb3
 
afae83c
 
 
 
 
 
 
 
 
 
 
 
ec4cebf
 
afae83c
 
 
ec4cebf
afae83c
ec4cebf
afae83c
 
ec4cebf
afae83c
 
 
ec4cebf
afae83c
 
 
 
 
 
ec4cebf
afae83c
 
 
 
c68ae83
afae83c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfa6fb3
5f364b5
afae83c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random

MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"

image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = WanImageToVideoPipeline.from_pretrained(
    MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")

causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
pipe.fuse_lora()

MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 320
DEFAULT_W_SLIDER_VALUE = 560
NEW_FORMULA_MAX_AREA = 480.0 * 832.0 

SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 120

default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"

# CSS ์Šคํƒ€์ผ ์ •์˜
custom_css = """
/* ์ „์ฒด ๋ฐฐ๊ฒฝ ๊ทธ๋ผ๋””์–ธํŠธ */
.gradio-container {
    font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
    background: linear-gradient(135deg, #667eea 0%, #764ba2 25%, #f093fb 50%, #f5576c 75%, #fa709a 100%) !important;
    background-size: 400% 400% !important;
    animation: gradientShift 15s ease infinite !important;
}

@keyframes gradientShift {
    0% { background-position: 0% 50%; }
    50% { background-position: 100% 50%; }
    100% { background-position: 0% 50%; }
}

/* ๋ฉ”์ธ ์ปจํ…Œ์ด๋„ˆ ์Šคํƒ€์ผ */
.main-container {
    backdrop-filter: blur(10px);
    background: rgba(255, 255, 255, 0.1) !important;
    border-radius: 20px !important;
    padding: 30px !important;
    box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37) !important;
    border: 1px solid rgba(255, 255, 255, 0.18) !important;
}

/* ํ—ค๋” ์Šคํƒ€์ผ */
h1 {
    background: linear-gradient(45deg, #ffffff, #f0f0f0) !important;
    -webkit-background-clip: text !important;
    -webkit-text-fill-color: transparent !important;
    background-clip: text !important;
    font-weight: 800 !important;
    font-size: 2.5rem !important;
    text-align: center !important;
    margin-bottom: 2rem !important;
    text-shadow: 2px 2px 4px rgba(0,0,0,0.1) !important;
}

/* ์ปดํฌ๋„ŒํŠธ ์ปจํ…Œ์ด๋„ˆ ์Šคํƒ€์ผ */
.input-container, .output-container {
    background: rgba(255, 255, 255, 0.08) !important;
    border-radius: 15px !important;
    padding: 20px !important;
    margin: 10px 0 !important;
    backdrop-filter: blur(5px) !important;
    border: 1px solid rgba(255, 255, 255, 0.1) !important;
}

/* ์ž…๋ ฅ ํ•„๋“œ ์Šคํƒ€์ผ */
input, textarea, .gr-box {
    background: rgba(255, 255, 255, 0.9) !important;
    border: 1px solid rgba(255, 255, 255, 0.3) !important;
    border-radius: 10px !important;
    color: #333 !important;
    transition: all 0.3s ease !important;
}

input:focus, textarea:focus {
    background: rgba(255, 255, 255, 1) !important;
    border-color: #667eea !important;
    box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
}

/* ๋ฒ„ํŠผ ์Šคํƒ€์ผ */
.generate-btn {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    color: white !important;
    font-weight: 600 !important;
    font-size: 1.1rem !important;
    padding: 12px 30px !important;
    border-radius: 50px !important;
    border: none !important;
    cursor: pointer !important;
    transition: all 0.3s ease !important;
    box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important;
}

.generate-btn:hover {
    transform: translateY(-2px) !important;
    box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6) !important;
}

/* ์Šฌ๋ผ์ด๋” ์Šคํƒ€์ผ */
input[type="range"] {
    background: transparent !important;
}

input[type="range"]::-webkit-slider-track {
    background: rgba(255, 255, 255, 0.3) !important;
    border-radius: 5px !important;
    height: 6px !important;
}

input[type="range"]::-webkit-slider-thumb {
    background: linear-gradient(135deg, #667eea, #764ba2) !important;
    border: 2px solid white !important;
    border-radius: 50% !important;
    cursor: pointer !important;
    width: 18px !important;
    height: 18px !important;
    -webkit-appearance: none !important;
}

/* Accordion ์Šคํƒ€์ผ */
.gr-accordion {
    background: rgba(255, 255, 255, 0.05) !important;
    border-radius: 10px !important;
    border: 1px solid rgba(255, 255, 255, 0.1) !important;
    margin: 15px 0 !important;
}

/* ๋ผ๋ฒจ ์Šคํƒ€์ผ */
label {
    color: #ffffff !important;
    font-weight: 500 !important;
    font-size: 0.95rem !important;
    margin-bottom: 5px !important;
}

/* ์ด๋ฏธ์ง€ ์—…๋กœ๋“œ ์˜์—ญ */
.image-upload {
    border: 2px dashed rgba(255, 255, 255, 0.3) !important;
    border-radius: 15px !important;
    background: rgba(255, 255, 255, 0.05) !important;
    transition: all 0.3s ease !important;
}

.image-upload:hover {
    border-color: rgba(255, 255, 255, 0.5) !important;
    background: rgba(255, 255, 255, 0.1) !important;
}

/* ๋น„๋””์˜ค ์ถœ๋ ฅ ์˜์—ญ */
video {
    border-radius: 15px !important;
    box-shadow: 0 4px 20px rgba(0, 0, 0, 0.3) !important;
}

/* Examples ์„น์…˜ ์Šคํƒ€์ผ */
.gr-examples {
    background: rgba(255, 255, 255, 0.05) !important;
    border-radius: 15px !important;
    padding: 20px !important;
    margin-top: 20px !important;
}

/* Checkbox ์Šคํƒ€์ผ */
input[type="checkbox"] {
    accent-color: #667eea !important;
}

/* ๋ฐ˜์‘ํ˜• ์• ๋‹ˆ๋ฉ”์ด์…˜ */
@media (max-width: 768px) {
    h1 { font-size: 2rem !important; }
    .main-container { padding: 20px !important; }
}
"""

def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
                                 min_slider_h, max_slider_h,
                                 min_slider_w, max_slider_w,
                                 default_h, default_w):
    orig_w, orig_h = pil_image.size
    if orig_w <= 0 or orig_h <= 0:
        return default_h, default_w

    aspect_ratio = orig_h / orig_w
    
    calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
    calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))

    calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
    calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
    
    new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
    new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
    
    return new_h, new_w

def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
    if uploaded_pil_image is None:
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
    try:
        new_h, new_w = _calculate_new_dimensions_wan(
            uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
            SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
            DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
        )
        return gr.update(value=new_h), gr.update(value=new_w)
    except Exception as e:
        gr.Warning("Error attempting to calculate new dimensions")
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)

def get_duration(input_image, prompt, height, width, 
                   negative_prompt, duration_seconds,
                   guidance_scale, steps,
                   seed, randomize_seed, 
                   progress):
    if steps > 4 and duration_seconds > 2:
        return 90
    elif steps > 4 or duration_seconds > 2:
        return 75
    else:
        return 60

@spaces.GPU(duration=get_duration)
def generate_video(input_image, prompt, height, width, 
                   negative_prompt=default_negative_prompt, duration_seconds = 2,
                   guidance_scale = 1, steps = 4,
                   seed = 42, randomize_seed = False, 
                   progress=gr.Progress(track_tqdm=True)):
    
    if input_image is None:
        raise gr.Error("Please upload an input image.")

    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
    
    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
    
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)

    resized_image = input_image.resize((target_w, target_h))

    with torch.inference_mode():
        output_frames_list = pipe(
            image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
            height=target_h, width=target_w, num_frames=num_frames,
            guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
            generator=torch.Generator(device="cuda").manual_seed(current_seed)
        ).frames[0]

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name
    export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
    return video_path, current_seed

with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
    with gr.Column(elem_classes=["main-container"]):
        gr.Markdown("# โœจ Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA")

        # Add badges side by side
        gr.HTML("""
        <div class="badge-container">
            <a href="https://huggingface.co/spaces/Heartsync/wan2-1-fast-security" target="_blank">
                <img src="https://img.shields.io/static/v1?label=WAN%202.1&message=FAST%20%26%20Furios&color=%23008080&labelColor=%230000ff&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
            </a>
            <a href="https://huggingface.co/spaces/Heartsync/WAN-VIDEO-AUDIO" target="_blank">
                <img src="https://img.shields.io/static/v1?label=WAN%202.1&message=VIDEO%20%26%20AUDIO&color=%23008080&labelColor=%230000ff&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
            </a>
        </div>
        """)
        
        with gr.Row():
            with gr.Column(elem_classes=["input-container"]):
                input_image_component = gr.Image(
                    type="pil", 
                    label="๐Ÿ–ผ๏ธ Input Image (auto-resized to target H/W)",
                    elem_classes=["image-upload"]
                )
                prompt_input = gr.Textbox(
                    label="โœ๏ธ Prompt", 
                    value=default_prompt_i2v,
                    lines=2
                )
                duration_seconds_input = gr.Slider(
                    minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), 
                    maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), 
                    step=0.1, 
                    value=2, 
                    label="โฑ๏ธ Duration (seconds)", 
                    info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
                )
                
                with gr.Accordion("โš™๏ธ Advanced Settings", open=False):
                    negative_prompt_input = gr.Textbox(
                        label="โŒ Negative Prompt", 
                        value=default_negative_prompt, 
                        lines=3
                    )
                    seed_input = gr.Slider(
                        label="๐ŸŽฒ Seed", 
                        minimum=0, 
                        maximum=MAX_SEED, 
                        step=1, 
                        value=42, 
                        interactive=True
                    )
                    randomize_seed_checkbox = gr.Checkbox(
                        label="๐Ÿ”€ Randomize seed", 
                        value=True, 
                        interactive=True
                    )
                    with gr.Row():
                        height_input = gr.Slider(
                            minimum=SLIDER_MIN_H, 
                            maximum=SLIDER_MAX_H, 
                            step=MOD_VALUE, 
                            value=DEFAULT_H_SLIDER_VALUE, 
                            label=f"๐Ÿ“ Output Height (multiple of {MOD_VALUE})"
                        )
                        width_input = gr.Slider(
                            minimum=SLIDER_MIN_W, 
                            maximum=SLIDER_MAX_W, 
                            step=MOD_VALUE, 
                            value=DEFAULT_W_SLIDER_VALUE, 
                            label=f"๐Ÿ“ Output Width (multiple of {MOD_VALUE})"
                        )
                    steps_slider = gr.Slider(
                        minimum=1, 
                        maximum=30, 
                        step=1, 
                        value=4, 
                        label="๐Ÿš€ Inference Steps"
                    ) 
                    guidance_scale_input = gr.Slider(
                        minimum=0.0, 
                        maximum=20.0, 
                        step=0.5, 
                        value=1.0, 
                        label="๐ŸŽฏ Guidance Scale", 
                        visible=False
                    )

                generate_button = gr.Button(
                    "๐ŸŽฌ Generate Video", 
                    variant="primary",
                    elem_classes=["generate-btn"]
                )
                
            with gr.Column(elem_classes=["output-container"]):
                video_output = gr.Video(
                    label="๐ŸŽฅ Generated Video", 
                    autoplay=True, 
                    interactive=False
                )

        input_image_component.upload(
            fn=handle_image_upload_for_dims_wan,
            inputs=[input_image_component, height_input, width_input],
            outputs=[height_input, width_input]
        )
        
        input_image_component.clear( 
            fn=handle_image_upload_for_dims_wan,
            inputs=[input_image_component, height_input, width_input],
            outputs=[height_input, width_input]
        )
        
        ui_inputs = [
            input_image_component, prompt_input, height_input, width_input,
            negative_prompt_input, duration_seconds_input,
            guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
        ]
        generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])

        with gr.Column():
            gr.Examples(
                examples=[ 
                    ["peng.png", "a penguin playfully dancing in the snow, Antarctica", 896, 512],
                    ["forg.jpg", "the frog jumps around", 448, 832],
                ],
                inputs=[input_image_component, prompt_input, height_input, width_input], 
                outputs=[video_output, seed_input], 
                fn=generate_video, 
                cache_examples="lazy",
                label="๐ŸŒŸ Example Gallery"
            )

if __name__ == "__main__":
    demo.queue().launch()