Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler | |
from diffusers.utils import export_to_video | |
from transformers import CLIPVisionModel | |
import gradio as gr | |
import tempfile | |
import spaces | |
from huggingface_hub import hf_hub_download | |
import numpy as np | |
from PIL import Image | |
import random | |
import logging | |
import torchaudio | |
import os | |
import gc | |
# MMAudio imports | |
try: | |
import mmaudio | |
except ImportError: | |
os.system("pip install -e .") | |
import mmaudio | |
# Set environment variables for better memory management | |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512' | |
os.environ['HF_HUB_CACHE'] = '/tmp/hub' # Use temp directory to avoid filling persistent storage | |
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video, | |
setup_eval_logging) | |
from mmaudio.model.flow_matching import FlowMatching | |
from mmaudio.model.networks import MMAudio, get_my_mmaudio | |
from mmaudio.model.sequence_config import SequenceConfig | |
from mmaudio.model.utils.features_utils import FeaturesUtils | |
# Clean up temp files periodically | |
def cleanup_temp_files(): | |
"""Clean up temporary files to save storage""" | |
temp_dir = tempfile.gettempdir() | |
for filename in os.listdir(temp_dir): | |
filepath = os.path.join(temp_dir, filename) | |
try: | |
if filename.endswith(('.mp4', '.flac', '.wav')): | |
os.remove(filepath) | |
except: | |
pass | |
# Video generation model setup | |
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers" | |
LORA_REPO_ID = "Kijai/WanVideo_comfy" | |
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors" | |
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32) | |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32) | |
pipe = WanImageToVideoPipeline.from_pretrained( | |
MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16 | |
) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0) | |
pipe.to("cuda") | |
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME) | |
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora") | |
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95]) | |
pipe.fuse_lora() | |
# Audio generation model setup | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
log = logging.getLogger() | |
device = 'cuda' | |
dtype = torch.bfloat16 | |
# Global variables for audio model (loaded on demand) | |
audio_model = None | |
audio_net = None | |
audio_feature_utils = None | |
audio_seq_cfg = None | |
def load_audio_model(): | |
"""Load audio model on demand to save storage""" | |
global audio_model, audio_net, audio_feature_utils, audio_seq_cfg | |
if audio_net is None: | |
audio_model = all_model_cfg['small_16k'] # Use smaller model | |
audio_model.download_if_needed() | |
setup_eval_logging() | |
seq_cfg = audio_model.seq_cfg | |
net = get_my_mmaudio(audio_model.model_name).to(device, dtype).eval() | |
net.load_weights(torch.load(audio_model.model_path, map_location=device, weights_only=True)) | |
log.info(f'Loaded weights from {audio_model.model_path}') | |
feature_utils = FeaturesUtils(tod_vae_ckpt=audio_model.vae_path, | |
synchformer_ckpt=audio_model.synchformer_ckpt, | |
enable_conditions=True, | |
mode=audio_model.mode, | |
bigvgan_vocoder_ckpt=audio_model.bigvgan_16k_path, | |
need_vae_encoder=False) | |
feature_utils = feature_utils.to(device, dtype).eval() | |
audio_net = net | |
audio_feature_utils = feature_utils | |
audio_seq_cfg = seq_cfg | |
return audio_net, audio_feature_utils, audio_seq_cfg | |
# Constants | |
MOD_VALUE = 32 | |
DEFAULT_H_SLIDER_VALUE = 320 | |
DEFAULT_W_SLIDER_VALUE = 560 | |
NEW_FORMULA_MAX_AREA = 480.0 * 832.0 | |
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896 | |
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896 | |
MAX_SEED = np.iinfo(np.int32).max | |
FIXED_FPS = 24 | |
MIN_FRAMES_MODEL = 8 | |
MAX_FRAMES_MODEL = 120 | |
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation" | |
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature" | |
default_audio_prompt = "" | |
default_audio_negative_prompt = "music" | |
# CSS | |
custom_css = """ | |
/* μ 체 λ°°κ²½ κ·ΈλΌλμΈνΈ */ | |
.gradio-container { | |
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important; | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 25%, #f093fb 50%, #f5576c 75%, #fa709a 100%) !important; | |
background-size: 400% 400% !important; | |
animation: gradientShift 15s ease infinite !important; | |
} | |
@keyframes gradientShift { | |
0% { background-position: 0% 50%; } | |
50% { background-position: 100% 50%; } | |
100% { background-position: 0% 50%; } | |
} | |
/* λ©μΈ 컨ν μ΄λ μ€νμΌ */ | |
.main-container { | |
backdrop-filter: blur(10px); | |
background: rgba(255, 255, 255, 0.1) !important; | |
border-radius: 20px !important; | |
padding: 30px !important; | |
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37) !important; | |
border: 1px solid rgba(255, 255, 255, 0.18) !important; | |
} | |
/* ν€λ μ€νμΌ */ | |
h1 { | |
background: linear-gradient(45deg, #ffffff, #f0f0f0) !important; | |
-webkit-background-clip: text !important; | |
-webkit-text-fill-color: transparent !important; | |
background-clip: text !important; | |
font-weight: 800 !important; | |
font-size: 2.5rem !important; | |
text-align: center !important; | |
margin-bottom: 2rem !important; | |
text-shadow: 2px 2px 4px rgba(0,0,0,0.1) !important; | |
} | |
/* μ»΄ν¬λνΈ μ»¨ν μ΄λ μ€νμΌ */ | |
.input-container, .output-container { | |
background: rgba(255, 255, 255, 0.08) !important; | |
border-radius: 15px !important; | |
padding: 20px !important; | |
margin: 10px 0 !important; | |
backdrop-filter: blur(5px) !important; | |
border: 1px solid rgba(255, 255, 255, 0.1) !important; | |
} | |
/* μ λ ₯ νλ μ€νμΌ */ | |
input, textarea, .gr-box { | |
background: rgba(255, 255, 255, 0.9) !important; | |
border: 1px solid rgba(255, 255, 255, 0.3) !important; | |
border-radius: 10px !important; | |
color: #333 !important; | |
transition: all 0.3s ease !important; | |
} | |
input:focus, textarea:focus { | |
background: rgba(255, 255, 255, 1) !important; | |
border-color: #667eea !important; | |
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important; | |
} | |
/* λ²νΌ μ€νμΌ */ | |
.generate-btn { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important; | |
color: white !important; | |
font-weight: 600 !important; | |
font-size: 1.1rem !important; | |
padding: 12px 30px !important; | |
border-radius: 50px !important; | |
border: none !important; | |
cursor: pointer !important; | |
transition: all 0.3s ease !important; | |
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important; | |
} | |
.generate-btn:hover { | |
transform: translateY(-2px) !important; | |
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6) !important; | |
} | |
/* μ¬λΌμ΄λ μ€νμΌ */ | |
input[type="range"] { | |
background: transparent !important; | |
} | |
input[type="range"]::-webkit-slider-track { | |
background: rgba(255, 255, 255, 0.3) !important; | |
border-radius: 5px !important; | |
height: 6px !important; | |
} | |
input[type="range"]::-webkit-slider-thumb { | |
background: linear-gradient(135deg, #667eea, #764ba2) !important; | |
border: 2px solid white !important; | |
border-radius: 50% !important; | |
cursor: pointer !important; | |
width: 18px !important; | |
height: 18px !important; | |
-webkit-appearance: none !important; | |
} | |
/* Accordion μ€νμΌ */ | |
.gr-accordion { | |
background: rgba(255, 255, 255, 0.05) !important; | |
border-radius: 10px !important; | |
border: 1px solid rgba(255, 255, 255, 0.1) !important; | |
margin: 15px 0 !important; | |
} | |
/* λΌλ²¨ μ€νμΌ */ | |
label { | |
color: #ffffff !important; | |
font-weight: 500 !important; | |
font-size: 0.95rem !important; | |
margin-bottom: 5px !important; | |
} | |
/* μ΄λ―Έμ§ μ λ‘λ μμ */ | |
.image-upload { | |
border: 2px dashed rgba(255, 255, 255, 0.3) !important; | |
border-radius: 15px !important; | |
background: rgba(255, 255, 255, 0.05) !important; | |
transition: all 0.3s ease !important; | |
} | |
.image-upload:hover { | |
border-color: rgba(255, 255, 255, 0.5) !important; | |
background: rgba(255, 255, 255, 0.1) !important; | |
} | |
/* λΉλμ€ μΆλ ₯ μμ */ | |
video { | |
border-radius: 15px !important; | |
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.3) !important; | |
} | |
/* Examples μΉμ μ€νμΌ */ | |
.gr-examples { | |
background: rgba(255, 255, 255, 0.05) !important; | |
border-radius: 15px !important; | |
padding: 20px !important; | |
margin-top: 20px !important; | |
} | |
/* Checkbox μ€νμΌ */ | |
input[type="checkbox"] { | |
accent-color: #667eea !important; | |
} | |
/* Radio λ²νΌ μ€νμΌ */ | |
input[type="radio"] { | |
accent-color: #667eea !important; | |
} | |
/* λ°μν μ λλ©μ΄μ */ | |
@media (max-width: 768px) { | |
h1 { font-size: 2rem !important; } | |
.main-container { padding: 20px !important; } | |
} | |
""" | |
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area, | |
min_slider_h, max_slider_h, | |
min_slider_w, max_slider_w, | |
default_h, default_w): | |
orig_w, orig_h = pil_image.size | |
if orig_w <= 0 or orig_h <= 0: | |
return default_h, default_w | |
aspect_ratio = orig_h / orig_w | |
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio)) | |
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio)) | |
calc_h = max(mod_val, (calc_h // mod_val) * mod_val) | |
calc_w = max(mod_val, (calc_w // mod_val) * mod_val) | |
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val)) | |
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val)) | |
return new_h, new_w | |
def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val): | |
if uploaded_pil_image is None: | |
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) | |
try: | |
new_h, new_w = _calculate_new_dimensions_wan( | |
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA, | |
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W, | |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE | |
) | |
return gr.update(value=new_h), gr.update(value=new_w) | |
except Exception as e: | |
gr.Warning("Error attempting to calculate new dimensions") | |
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) | |
def clear_cache(): | |
"""Clear GPU and CPU cache to free memory""" | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.synchronize() | |
gc.collect() | |
def get_duration(input_image, prompt, height, width, | |
negative_prompt, duration_seconds, | |
guidance_scale, steps, | |
seed, randomize_seed, | |
audio_mode, audio_prompt, audio_negative_prompt, | |
audio_seed, audio_steps, audio_cfg_strength, | |
progress): | |
base_duration = 60 | |
if steps > 4 and duration_seconds > 2: | |
base_duration = 90 | |
elif steps > 4 or duration_seconds > 2: | |
base_duration = 75 | |
# Add extra time for audio generation | |
if audio_mode == "Enable Audio": | |
base_duration += 60 | |
return base_duration | |
def add_audio_to_video(video_path, duration_sec, audio_prompt, audio_negative_prompt, | |
audio_seed, audio_steps, audio_cfg_strength): | |
"""Add audio to video using MMAudio""" | |
# Load audio model on demand | |
net, feature_utils, seq_cfg = load_audio_model() | |
rng = torch.Generator(device=device) | |
if audio_seed >= 0: | |
rng.manual_seed(audio_seed) | |
else: | |
rng.seed() | |
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=audio_steps) | |
video_info = load_video(video_path, duration_sec) | |
clip_frames = video_info.clip_frames.unsqueeze(0) | |
sync_frames = video_info.sync_frames.unsqueeze(0) | |
duration = video_info.duration_sec | |
seq_cfg.duration = duration | |
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len) | |
audios = generate(clip_frames, | |
sync_frames, [audio_prompt], | |
negative_text=[audio_negative_prompt], | |
feature_utils=feature_utils, | |
net=net, | |
fm=fm, | |
rng=rng, | |
cfg_strength=audio_cfg_strength) | |
audio = audios.float().cpu()[0] | |
# Save video with audio | |
video_with_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name | |
make_video(video_info, video_with_audio_path, audio, sampling_rate=seq_cfg.sampling_rate) | |
return video_with_audio_path | |
def generate_video(input_image, prompt, height, width, | |
negative_prompt, duration_seconds, | |
guidance_scale, steps, | |
seed, randomize_seed, | |
audio_mode, audio_prompt, audio_negative_prompt, | |
audio_seed, audio_steps, audio_cfg_strength, | |
progress=gr.Progress(track_tqdm=True)): | |
if input_image is None: | |
raise gr.Error("Please upload an input image.") | |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) | |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) | |
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) | |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
resized_image = input_image.resize((target_w, target_h)) | |
# Generate video | |
with torch.inference_mode(): | |
output_frames_list = pipe( | |
image=resized_image, prompt=prompt, negative_prompt=negative_prompt, | |
height=target_h, width=target_w, num_frames=num_frames, | |
guidance_scale=float(guidance_scale), num_inference_steps=int(steps), | |
generator=torch.Generator(device="cuda").manual_seed(current_seed) | |
).frames[0] | |
# Save video without audio | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: | |
video_path = tmpfile.name | |
export_to_video(output_frames_list, video_path, fps=FIXED_FPS) | |
# Generate audio if enabled | |
video_with_audio_path = None | |
if audio_mode == "Enable Audio": | |
progress(0.5, desc="Generating audio...") | |
video_with_audio_path = add_audio_to_video( | |
video_path, duration_seconds, | |
audio_prompt, audio_negative_prompt, | |
audio_seed, audio_steps, audio_cfg_strength | |
) | |
# Clear cache to free memory | |
clear_cache() | |
cleanup_temp_files() # Clean up temp files | |
return video_path, video_with_audio_path, current_seed | |
def update_audio_visibility(audio_mode): | |
"""Update visibility of audio-related components""" | |
return gr.update(visible=(audio_mode == "Enable Audio")) | |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo: | |
with gr.Column(elem_classes=["main-container"]): | |
gr.Markdown("# β¨ Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA + Audio") | |
# Add badges side by side | |
gr.HTML(""" | |
<div class="badge-container"> | |
<a href="https://huggingface.co/spaces/Heartsync/wan2-1-fast-security" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=WAN%202.1&message=FAST%20%26%20Furios&color=%23008080&labelColor=%230000ff&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge"> | |
</a> | |
<a href="https://huggingface.co/spaces/Heartsync/WAN-VIDEO-AUDIO" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=WAN%202.1&message=VIDEO%20%26%20AUDIO&color=%23008080&labelColor=%230000ff&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge"> | |
</a> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(elem_classes=["input-container"]): | |
input_image_component = gr.Image( | |
type="pil", | |
label="πΌοΈ Input Image (auto-resized to target H/W)", | |
elem_classes=["image-upload"] | |
) | |
prompt_input = gr.Textbox( | |
label="βοΈ Prompt", | |
value=default_prompt_i2v, | |
lines=2 | |
) | |
duration_seconds_input = gr.Slider( | |
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), | |
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), | |
step=0.1, | |
value=2, | |
label="β±οΈ Duration (seconds)", | |
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps." | |
) | |
# Audio mode radio button | |
audio_mode = gr.Radio( | |
choices=["Video Only", "Enable Audio"], | |
value="Video Only", | |
label="π΅ Audio Mode", | |
info="Enable to add audio to your generated video" | |
) | |
# Audio settings (initially hidden) | |
with gr.Column(visible=False) as audio_settings: | |
audio_prompt = gr.Textbox( | |
label="π΅ Audio Prompt", | |
value=default_audio_prompt, | |
placeholder="Describe the audio you want (e.g., 'waves, seagulls', 'footsteps on gravel')", | |
lines=2 | |
) | |
audio_negative_prompt = gr.Textbox( | |
label="β Audio Negative Prompt", | |
value=default_audio_negative_prompt, | |
lines=2 | |
) | |
with gr.Row(): | |
audio_seed = gr.Number( | |
label="π² Audio Seed", | |
value=-1, | |
precision=0, | |
minimum=-1 | |
) | |
audio_steps = gr.Slider( | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=25, | |
label="π Audio Steps" | |
) | |
audio_cfg_strength = gr.Slider( | |
minimum=1.0, | |
maximum=10.0, | |
step=0.5, | |
value=4.5, | |
label="π― Audio Guidance" | |
) | |
with gr.Accordion("βοΈ Advanced Settings", open=False): | |
negative_prompt_input = gr.Textbox( | |
label="β Negative Prompt", | |
value=default_negative_prompt, | |
lines=3 | |
) | |
seed_input = gr.Slider( | |
label="π² Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
interactive=True | |
) | |
randomize_seed_checkbox = gr.Checkbox( | |
label="π Randomize seed", | |
value=True, | |
interactive=True | |
) | |
with gr.Row(): | |
height_input = gr.Slider( | |
minimum=SLIDER_MIN_H, | |
maximum=SLIDER_MAX_H, | |
step=MOD_VALUE, | |
value=DEFAULT_H_SLIDER_VALUE, | |
label=f"π Output Height (multiple of {MOD_VALUE})" | |
) | |
width_input = gr.Slider( | |
minimum=SLIDER_MIN_W, | |
maximum=SLIDER_MAX_W, | |
step=MOD_VALUE, | |
value=DEFAULT_W_SLIDER_VALUE, | |
label=f"π Output Width (multiple of {MOD_VALUE})" | |
) | |
steps_slider = gr.Slider( | |
minimum=1, | |
maximum=30, | |
step=1, | |
value=4, | |
label="π Inference Steps" | |
) | |
guidance_scale_input = gr.Slider( | |
minimum=0.0, | |
maximum=20.0, | |
step=0.5, | |
value=1.0, | |
label="π― Guidance Scale", | |
visible=False | |
) | |
generate_button = gr.Button( | |
"π¬ Generate Video", | |
variant="primary", | |
elem_classes=["generate-btn"] | |
) | |
with gr.Column(elem_classes=["output-container"]): | |
video_output = gr.Video( | |
label="π₯ Generated Video", | |
autoplay=True, | |
interactive=False | |
) | |
video_with_audio_output = gr.Video( | |
label="π₯ Generated Video with Audio", | |
autoplay=True, | |
interactive=False, | |
visible=False | |
) | |
# Event handlers | |
audio_mode.change( | |
fn=update_audio_visibility, | |
inputs=[audio_mode], | |
outputs=[audio_settings, video_with_audio_output] | |
) | |
input_image_component.upload( | |
fn=handle_image_upload_for_dims_wan, | |
inputs=[input_image_component, height_input, width_input], | |
outputs=[height_input, width_input] | |
) | |
input_image_component.clear( | |
fn=handle_image_upload_for_dims_wan, | |
inputs=[input_image_component, height_input, width_input], | |
outputs=[height_input, width_input] | |
) | |
ui_inputs = [ | |
input_image_component, prompt_input, height_input, width_input, | |
negative_prompt_input, duration_seconds_input, | |
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox, | |
audio_mode, audio_prompt, audio_negative_prompt, | |
audio_seed, audio_steps, audio_cfg_strength | |
] | |
generate_button.click( | |
fn=generate_video, | |
inputs=ui_inputs, | |
outputs=[video_output, video_with_audio_output, seed_input] | |
) | |
with gr.Column(): | |
gr.Examples( | |
examples=[ | |
["peng.png", "a penguin playfully dancing in the snow, Antarctica", 896, 512, | |
default_negative_prompt, 2, 1.0, 4, 42, False, | |
"Video Only", "", default_audio_negative_prompt, -1, 25, 4.5], | |
["forg.jpg", "the frog jumps around", 448, 832, | |
default_negative_prompt, 2, 1.0, 4, 42, False, | |
"Enable Audio", "frog croaking, water splashing", default_audio_negative_prompt, -1, 25, 4.5], | |
], | |
inputs=ui_inputs, | |
outputs=[video_output, video_with_audio_output, seed_input], | |
fn=generate_video, | |
cache_examples="lazy", | |
label="π Example Gallery" | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() |