Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,850 Bytes
d428031 a7b9643 b46c8a5 2b73795 a7b9643 14b9963 a7b9643 b46c8a5 a7b9643 d4bd6b7 a7b9643 a8e6bb8 a7b9643 c301058 a7b9643 6e5b75b a7b9643 c301058 a7b9643 c301058 a7b9643 c301058 a7b9643 c301058 a7b9643 b46c8a5 a7b9643 b46c8a5 a7b9643 2b73795 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import gradio as gr
import json
import os
from typing import Any, List
import spaces
from PIL import Image, ImageDraw
import requests
from transformers import AutoModelForImageTextToText, AutoProcessor
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
import torch
import re
# --- Configuration ---
MODEL_ID = "Hcompany/Holo1-7B"
# --- Model and Processor Loading (Load once) ---
print(f"Loading model and processor for {MODEL_ID}...")
model = None
processor = None
model_loaded = False
load_error_message = ""
try:
model = AutoModelForImageTextToText.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
trust_remote_code=True
).to("cuda")
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_loaded = True
print("Model and processor loaded successfully.")
except Exception as e:
load_error_message = f"Error loading model/processor: {e}\n" \
"This might be due to network issues, an incorrect model ID, or missing dependencies (like flash_attention_2 if enabled by default in some config).\n" \
"Ensure you have a stable internet connection and the necessary libraries installed."
print(load_error_message)
# --- Helper functions from the model card (or adapted) ---
def get_localization_prompt(pil_image: Image.Image, instruction: str) -> List[dict[str, Any]]:
"""
Prepares the prompt structure for the Holo1 model for localization tasks.
The `pil_image` argument here is primarily for semantic completeness in the prompt structure,
as the actual image tensor is handled by the processor later.
"""
guidelines: str = "Localize an element on the GUI image according to my instructions and output a click position as Click(x, y) with x num pixels from the left edge and y num pixels from the top edge."
return [
{
"role": "user",
"content": [
{
"type": "image",
"image": pil_image,
},
{"type": "text", "text": f"{guidelines}\n{instruction}"},
],
}
]
@spaces.GPU(duration=20)
def run_inference_localization(
messages_for_template: List[dict[str, Any]],
pil_image_for_processing: Image.Image
) -> str:
model.to("cuda")
torch.cuda.set_device(0)
"""
Runs inference using the Holo1 model.
- messages_for_template: The prompt structure, potentially including the PIL image object
(which apply_chat_template converts to an image tag).
- pil_image_for_processing: The actual PIL image to be processed into tensors.
"""
# 1. Apply chat template to messages. This will create the text part of the prompt,
# including image tags if the image was part of `messages_for_template`.
text_prompt = processor.apply_chat_template(
messages_for_template,
tokenize=False,
add_generation_prompt=True
)
# 2. Process text and image together to get model inputs
inputs = processor(
text=[text_prompt],
images=[pil_image_for_processing], # Provide the actual image data here
padding=True,
return_tensors="pt",
)
inputs = inputs.to(model.device)
# 3. Generate response
# Using do_sample=False for more deterministic output, as in the model card's structured output example
generated_ids = model.generate(**inputs, max_new_tokens=128, do_sample=False)
# 4. Trim input_ids from generated_ids to get only the generated part
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
# 5. Decode the generated tokens
decoded_output = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
return decoded_output[0] if decoded_output else ""
# --- Gradio processing function ---
def predict_click_location(input_pil_image: Image.Image, instruction: str):
if not model_loaded or not processor or not model:
return f"Model not loaded. Error: {load_error_message}", None
if not input_pil_image:
return "No image provided. Please upload an image.", None
if not instruction or instruction.strip() == "":
return "No instruction provided. Please type an instruction.", input_pil_image.copy().convert("RGB")
# 1. Prepare image: Resize according to model's image processor's expected properties
# This ensures predicted coordinates match the (resized) image dimensions.
image_proc_config = processor.image_processor
try:
resized_height, resized_width = smart_resize(
input_pil_image.height,
input_pil_image.width,
factor=image_proc_config.patch_size * image_proc_config.merge_size,
min_pixels=image_proc_config.min_pixels,
max_pixels=image_proc_config.max_pixels,
)
# Using LANCZOS for resampling as it's generally good for downscaling.
# The model card used `resample=None`, which might imply nearest or default.
# For visual quality in the demo, LANCZOS is reasonable.
resized_image = input_pil_image.resize(
size=(resized_width, resized_height),
resample=Image.Resampling.LANCZOS # type: ignore
)
except Exception as e:
print(f"Error resizing image: {e}")
return f"Error resizing image: {e}", input_pil_image.copy().convert("RGB")
# 2. Create the prompt using the resized image (for correct image tagging context) and instruction
messages = get_localization_prompt(resized_image, instruction)
# 3. Run inference
# Pass `messages` (which includes the image object for template processing)
# and `resized_image` (for actual tensor conversion).
try:
coordinates_str = run_inference_localization(messages, resized_image)
except Exception as e:
print(f"Error during model inference: {e}")
return f"Error during model inference: {e}", resized_image.copy().convert("RGB")
# 4. Parse coordinates and draw on the image
output_image_with_click = resized_image.copy().convert("RGB") # Ensure it's RGB for drawing
parsed_coords = None
# Expected format from the model: "Click(x, y)"
match = re.search(r"Click\((\d+),\s*(\d+)\)", coordinates_str)
if match:
try:
x = int(match.group(1))
y = int(match.group(2))
parsed_coords = (x, y)
draw = ImageDraw.Draw(output_image_with_click)
# Make the marker somewhat responsive to image size, but not too small/large
radius = max(5, min(resized_width // 100, resized_height // 100, 15))
# Define the bounding box for the ellipse (circle)
bbox = (x - radius, y - radius, x + radius, y + radius)
draw.ellipse(bbox, outline="red", width=max(2, radius // 4)) # Draw a red circle
print(f"Predicted and drawn click at: ({x}, {y}) on resized image ({resized_width}x{resized_height})")
except ValueError:
print(f"Could not parse integers from coordinates: {coordinates_str}")
# Keep original coordinates_str, output_image_with_click will be the resized image without a mark
except Exception as e:
print(f"Error drawing on image: {e}")
else:
print(f"Could not parse 'Click(x, y)' from model output: {coordinates_str}")
return coordinates_str, output_image_with_click
# --- Load Example Data ---
example_image = None
example_instruction = "Select July 14th as the check-out date"
try:
example_image_url = "https://huggingface.co/Hcompany/Holo1-7B/resolve/main/calendar_example.jpg"
example_image = Image.open(requests.get(example_image_url, stream=True).raw)
except Exception as e:
print(f"Could not load example image from URL: {e}")
# Create a placeholder image if loading fails, so Gradio example still works
try:
example_image = Image.new("RGB", (200, 150), color="lightgray")
draw = ImageDraw.Draw(example_image)
draw.text((10, 10), "Example image\nfailed to load", fill="black")
except: # If PIL itself is an issue (unlikely here but good for robustness)
pass
# --- Gradio Interface Definition ---
title = "Holo1-7B: Action VLM Localization Demo"
description = """
This demo showcases **Holo1-7B**, an Action Vision-Language Model developed by HCompany, fine-tuned from Qwen/Qwen2.5-VL-7B-Instruct.
It's designed to interact with web interfaces like a human user. Here, we demonstrate its UI localization capability.
**How to use:**
1. Upload an image (e.g., a screenshot of a UI, like the calendar example).
2. Provide a textual instruction (e.g., "Select July 14th as the check-out date").
3. The model will predict the click coordinates in the format `Click(x, y)`.
4. The predicted click point will be marked with a red circle on the (resized) image.
The model processes a resized version of your input image. Coordinates are relative to this resized image.
"""
article = f"""
<p style='text-align: center'>
Model: <a href='https://huggingface.co/{MODEL_ID}' target='_blank'>{MODEL_ID}</a> by HCompany |
Paper: <a href='https://cdn.prod.website-files.com/67e2dbd9acff0c50d4c8a80c/683ec8095b353e8b38317f80_h_tech_report_v1.pdf' target='_blank'>HCompany Tech Report</a> |
Blog: <a href='https://www.hcompany.ai/surfer-h' target='_blank'>Surfer-H Blog Post</a>
</p>
"""
if not model_loaded:
with gr.Blocks() as demo:
gr.Markdown(f"# <center>⚠️ Error: Model Failed to Load ⚠️</center>")
gr.Markdown(f"<center>{load_error_message}</center>")
gr.Markdown("<center>Please check the console output for more details. Reloading the space might help if it's a temporary issue.</center>")
else:
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
# gr.Markdown(description)
with gr.Row():
with gr.Column(scale=1):
input_image_component = gr.Image(type="pil", label="Input UI Image", height=400)
instruction_component = gr.Textbox(
label="Instruction",
placeholder="e.g., Click the 'Login' button",
info="Type the action you want the model to localize on the image."
)
submit_button = gr.Button("Localize Click", variant="primary")
with gr.Column(scale=1):
output_coords_component = gr.Textbox(label="Predicted Coordinates (Format: Click(x,y))", interactive=False)
output_image_component = gr.Image(type="pil", label="Image with Predicted Click Point", height=400, interactive=False)
if example_image:
gr.Examples(
examples=[[example_image, example_instruction]],
inputs=[input_image_component, instruction_component],
outputs=[output_coords_component, output_image_component],
fn=predict_click_location,
cache_examples="lazy",
)
gr.Markdown(article)
submit_button.click(
fn=predict_click_location,
inputs=[input_image_component, instruction_component],
outputs=[output_coords_component, output_image_component]
)
if __name__ == "__main__":
demo.launch(debug=True) |