Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import requests | |
import json | |
import os | |
# --- API Key --- | |
CMC_API_KEY = os.environ.get("CMC_API_KEY") # Store your API key as a Hugging Face Secret | |
if not CMC_API_KEY: | |
st.warning("Please add your CoinMarketCap API key as a Secret in Hugging Face Spaces.") | |
else: | |
headers = { | |
'X-CMC_PRO_API_KEY': CMC_API_KEY, | |
'Accepts': 'application/json' | |
} | |
# --- Data Fetching --- | |
# Cache data for 60 seconds | |
def get_crypto_price(symbol): | |
url = f'https://pro-api.coinmarketcap.com/v1/cryptocurrency/quotes/latest?symbol={symbol}' | |
try: | |
response = requests.get(url, headers=headers) | |
response.raise_for_status() | |
data = json.loads(response.text) | |
if data['status']['error_code'] == 0: | |
price = data['data'][symbol]['quote']['USD']['price'] | |
return price | |
else: | |
return f"Error fetching data: {data['status']['error_message']}" | |
except requests.exceptions.RequestException as e: | |
return f"Error connecting to CoinMarketCap API: {e}" | |
# --- AI Model Integration --- | |
def load_sentiment_model(): | |
tokenizer = AutoTokenizer.from_pretrained("ElKulako/cryptobert") | |
model = AutoModelForSequenceClassification.from_pretrained("ElKulako/cryptobert") | |
return tokenizer, model | |
def analyze_sentiment(text, tokenizer, model): | |
try: | |
inputs = tokenizer(text, return_tensors="pt") | |
outputs = model(**inputs) | |
logits = outputs.logits | |
predicted_class_id = logits.argmax().item() | |
return model.config.id2label[predicted_class_id] | |
except Exception as e: | |
return f"Error analyzing sentiment: {e}" | |
tokenizer, sentiment_model = load_sentiment_model() | |
# --- Main Chatbot Logic --- | |
def process_user_message(user_input): | |
user_input_lower = user_input.lower() | |
if "current price of" in user_input_lower: | |
symbol = user_input_lower.split("current price of")[1].strip().upper() | |
price = get_crypto_price(symbol) | |
if isinstance(price, str) and "Error" in price: | |
return price | |
else: | |
sentiment_summary = analyze_sentiment(f"Recent news about {symbol}", tokenizer, sentiment_model) | |
return f"The current price of {symbol} is ${price:.2f}. Market sentiment is currently {sentiment_summary}." | |
elif "should i buy" in user_input_lower: | |
return "I am currently unable to provide buy/sell recommendations without technical analysis capabilities in this deployment." | |
elif "rsi say about" in user_input_lower: | |
return "I am currently unable to analyze RSI without the necessary libraries in this deployment." | |
else: | |
return "I'm still learning! I can currently tell you the price of a cryptocurrency and analyze the sentiment of related news." | |
# --- Streamlit UI --- | |
st.title("Crypto Trading Assistant") | |
st.markdown("Ask me about cryptocurrency prices and market sentiment.") | |
user_query = st.text_input("Your question:", "") | |
if CMC_API_KEY: | |
if user_query: | |
with st.spinner("Thinking..."): | |
bot_response = process_user_message(user_query) | |
st.write(f"**Bot:** {bot_response}") | |
# Simple price chart example if the user asked for the price | |
if "price of" in user_query.lower(): | |
symbol = user_query.lower().split("price of")[1].strip().upper() | |
price_data = get_crypto_price(symbol) | |
if not isinstance(price_data, str): | |
st.subheader(f"Current Price of {symbol}: ${price_data:.2f}") | |
st.line_chart([price_data]) # Simple single point chart | |
else: | |
st.error("CoinMarketCap API key is missing. Please add it as a Secret.") |