raga / app.py
Har3ish's picture
Update app.py
8f0ca83 verified
raw
history blame
2.61 kB
# app.py
import gradio as gr
import pandas as pd
import numpy as np
import librosa
import joblib
import tensorflow as tf
from keras.models import load_model
from transformers import AutoTokenizer, TFAutoModel
# ====================
# 1. Load Model and Assets
# ====================
model = load_model("raga_predictor_model.h5")
scaler = joblib.load("scaler.pkl")
encoder = joblib.load("label_encoder.pkl")
# Load tokenizer and BERT model directly from Hugging Face
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/IndicBERTv2-MLM-only")
bert_model = TFAutoModel.from_pretrained("ai4bharat/IndicBERTv2-MLM-only")
# Load metadata
meta = pd.read_csv("raga_metadata.csv")
raga_descriptions = dict(zip(meta['raga'], meta['description']))
# ====================
# 2. Define Utility Functions
# ====================
def extract_features(file_path):
y, sr = librosa.load(file_path, sr=22050)
features = {
"chroma_stft": np.mean(librosa.feature.chroma_stft(y=y, sr=sr)),
"spec_cent": np.mean(librosa.feature.spectral_centroid(y=y, sr=sr)),
}
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=18)
for i in range(18):
features[f"mfcc{i+1}"] = np.mean(mfccs[i])
return pd.DataFrame([features])
def tokenize_description(description_text):
desc_tok = tokenizer(description_text, padding=True, truncation=True, max_length=64, return_tensors="tf")
desc_embed = bert_model(desc_tok['input_ids'], attention_mask=desc_tok['attention_mask'])[0][:, 0, :]
return desc_embed
def predict_raga(audio_file):
# Extract features
audio_df = extract_features(audio_file.name)
audio_scaled = scaler.transform(audio_df)
audio_lstm_input = audio_scaled.reshape((1, 1, audio_scaled.shape[1]))
# Use a dummy description
description_text = ""
# Tokenize dummy description
desc_embed = tokenize_description([description_text])
# Predict
pred = model.predict([audio_lstm_input, desc_embed])
raga_pred = encoder.inverse_transform([np.argmax(pred)])[0]
# Get description
description = raga_descriptions.get(raga_pred, "No description available.")
return f"🎡 Predicted Raga: {raga_pred}\n\nπŸ“ Description:\n{description}"
# ====================
# 3. Gradio Interface
# ====================
title = "🎢 Raga Prediction App"
description = "Upload an Indian classical music clip, and I will predict the Raga for you!"
interface = gr.Interface(
fn=predict_raga,
inputs=gr.Audio(type="file", label="Upload Audio File"),
outputs="text",
title=title,
description=description,
)
interface.launch()