import importlib __all__ = ['AskAgent'] class AskAgent(): dependencies = ["ollama==0.4.7", "pydantic==2.11.1", "pydantic_core==2.33.0"] inputSchema = { "name": "AskAgent", "description": "Asks an AI agent a question and gets a response. The agent must be created using the AgentCreator tool before using this tool.", "parameters": { "type": "object", "properties": { "agent_name": { "type": "string", "description": "Name of the AI agent that is to be asked a question. This name cannot have spaces or special characters. It should be a single word.", }, "prompt": { "type": "string", "description": "This is the prompt that will be used to ask the agent a question. It should be a string that describes the question to be asked.", } }, "required": ["agent_name", "prompt"], } } def __init__(self): pass def does_agent_exist(self, ollama, agent_name): all_agents = [a.model for a in ollama.list().models] if agent_name in all_agents or f'{agent_name}:latest' in all_agents: return True return False def run(self, **kwargs): print("Asking agent a question") agent_name = kwargs.get("agent_name") prompt = kwargs.get("prompt") ollama = importlib.import_module("ollama") if not self.does_agent_exist(ollama, agent_name): print("Agent does not exist") return { "status": "error", "message": "Agent does not exists", "output": None } agent_response = ollama.chat( model=agent_name, messages=[{"role": "user", "content": prompt}], ) print("Agent response", agent_response.message.content) return { "status": "success", "message": "Agent has replied to the given prompt", "output": agent_response.message.content, }