Spaces:
Running
Running
updated cost_benefit
Browse files- cost_benefit.py +33 -128
cost_benefit.py
CHANGED
@@ -3,143 +3,48 @@ import subprocess
|
|
3 |
import time
|
4 |
import requests
|
5 |
|
6 |
-
# Model info with both ollama and API usage
|
7 |
-
MODEL_INFO = {
|
8 |
-
"mistral": {
|
9 |
-
"size": 7,
|
10 |
-
"token_cost": 0.002,
|
11 |
-
"use_api": False
|
12 |
-
},
|
13 |
-
"llama": {
|
14 |
-
"size": 13,
|
15 |
-
"token_cost": 0.0025,
|
16 |
-
"use_api": False
|
17 |
-
},
|
18 |
-
"deepseek": {
|
19 |
-
"size": 1.3,
|
20 |
-
"token_cost": 0.0015,
|
21 |
-
"use_api": False,
|
22 |
-
"api": ".." # Example API
|
23 |
-
},
|
24 |
-
"gemini": {
|
25 |
-
"size": 15,
|
26 |
-
"token_cost": 0.003,
|
27 |
-
"use_api": False,
|
28 |
-
"api": ".."
|
29 |
-
}
|
30 |
-
}
|
31 |
-
|
32 |
-
def run_model_ollama(model, prompt):
|
33 |
-
try:
|
34 |
-
start = time.time()
|
35 |
-
result = subprocess.run(
|
36 |
-
["ollama", "run", model],
|
37 |
-
input=prompt.encode(),
|
38 |
-
stdout=subprocess.PIPE,
|
39 |
-
stderr=subprocess.PIPE,
|
40 |
-
timeout=60
|
41 |
-
)
|
42 |
-
end = time.time()
|
43 |
-
except Exception:
|
44 |
-
return None
|
45 |
-
|
46 |
-
output = result.stdout.decode().strip()
|
47 |
-
duration = end - start
|
48 |
-
token_count = len(output.split())
|
49 |
-
tokens_per_sec = token_count / duration if duration > 0 else 0
|
50 |
-
latency_ms = duration * 1000
|
51 |
-
token_cost = MODEL_INFO[model]["token_cost"] * token_count
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
"
|
57 |
-
"token_cost":
|
58 |
-
"
|
|
|
59 |
}
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
MODEL_INFO[model]["api"],
|
66 |
-
json={"prompt": prompt},
|
67 |
-
timeout=60
|
68 |
-
)
|
69 |
-
end = time.time()
|
70 |
-
response.raise_for_status()
|
71 |
-
output = response.json().get("response", "") # Adjust key as needed
|
72 |
-
except Exception:
|
73 |
-
return None
|
74 |
-
|
75 |
-
duration = end - start
|
76 |
-
token_count = len(output.split())
|
77 |
-
tokens_per_sec = token_count / duration if duration > 0 else 0
|
78 |
-
latency_ms = duration * 1000
|
79 |
-
token_cost = MODEL_INFO[model]["token_cost"] * token_count
|
80 |
-
|
81 |
-
return {
|
82 |
-
"model": model,
|
83 |
-
"latency_ms": latency_ms,
|
84 |
-
"tokens_sec": tokens_per_sec,
|
85 |
-
"token_cost": token_cost,
|
86 |
-
"output": output
|
87 |
}
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
return run_model_api(model, prompt)
|
92 |
-
else:
|
93 |
-
return run_model_ollama(model, prompt)
|
94 |
-
|
95 |
-
def get_best_model(prompt, weights, models=None):
|
96 |
-
if models is None:
|
97 |
-
models = list(MODEL_INFO.keys())
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
res = run_model(model, prompt)
|
102 |
-
if not res:
|
103 |
-
continue
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
res["decision_score"] = decision_score
|
112 |
-
results.append(res)
|
113 |
|
114 |
-
|
115 |
-
return "No models succeeded."
|
116 |
|
117 |
-
|
|
|
|
|
118 |
|
119 |
-
if
|
120 |
-
|
121 |
-
parser.add_argument('--prompt', required=True, help='The task or question to ask the models')
|
122 |
-
parser.add_argument('--latency', type=int, default=3, help='Priority for latency (1β5)')
|
123 |
-
parser.add_argument('--size', type=int, default=3, help='Priority for model size (1β5)')
|
124 |
-
parser.add_argument('--cost', type=int, default=3, help='Priority for token cost (1β5)')
|
125 |
-
parser.add_argument('--speed', type=int, default=3, help='Priority for tokens/sec (1β5)')
|
126 |
-
args = parser.parse_args()
|
127 |
|
128 |
-
|
129 |
-
"
|
130 |
-
"
|
131 |
-
"
|
132 |
-
"
|
|
|
133 |
}
|
134 |
-
|
135 |
-
best = get_best_model(args.prompt, weights)
|
136 |
-
|
137 |
-
if isinstance(best, str):
|
138 |
-
print(best)
|
139 |
-
else:
|
140 |
-
print(f"\nBest Model: {best['model']}")
|
141 |
-
print(f"Decision Score: {round(best['decision_score'], 4)}")
|
142 |
-
print(f"Latency (ms): {round(best['latency_ms'], 2)}")
|
143 |
-
print(f"Tokens/sec: {round(best['tokens_sec'], 2)}")
|
144 |
-
print(f"Token Cost ($): {round(best['token_cost'], 5)}")
|
145 |
-
print(f"\nOutput:\n{best['output']}")
|
|
|
3 |
import time
|
4 |
import requests
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
def get_best_model(weights: dict, runtime_env: str) -> dict:
|
8 |
+
#placeholders
|
9 |
+
models = {
|
10 |
+
"llama3.2": {"size": 2.5, "token_cost": 0.0001, "speed": 30},
|
11 |
+
"mistral": {"size": 4.2, "token_cost": 0.0002, "speed": 50},
|
12 |
+
"gemini-2.0-flash": {"size": 6.1, "token_cost": 0.0005, "speed": 60},
|
13 |
+
"gemini-2.5-pro-preview-03-25": {"size": 8.2, "token_cost": 0.002, "speed": 45}
|
14 |
}
|
15 |
|
16 |
+
penalty = {
|
17 |
+
"gpu": 1.0,
|
18 |
+
"cpu-local": 2.0,
|
19 |
+
"cloud-only": 1.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
}
|
21 |
|
22 |
+
best_model = None
|
23 |
+
best_score = float("-inf") # Track max score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
for model, metrics in models.items():
|
26 |
+
p = penalty.get(runtime_env, 2.0)
|
|
|
|
|
|
|
27 |
|
28 |
+
cost_score = (
|
29 |
+
weights["w_size"] * metrics["size"] * p +
|
30 |
+
weights["w_token_cost"] * metrics["token_cost"] * p +
|
31 |
+
weights["w_speed"] * (100 - metrics["speed"])
|
32 |
+
)
|
33 |
+
benefit_score = weights["w_speed"] * metrics["speed"]
|
|
|
|
|
34 |
|
35 |
+
decision_score = benefit_score / cost_score if cost_score != 0 else 0
|
|
|
36 |
|
37 |
+
if decision_score > best_score:
|
38 |
+
best_score = decision_score
|
39 |
+
best_model = model
|
40 |
|
41 |
+
if not best_model:
|
42 |
+
return "No suitable model found"
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
return {
|
45 |
+
"model": best_model,
|
46 |
+
"score": best_score,
|
47 |
+
"token_cost": models[best_model]["token_cost"],
|
48 |
+
"tokens_sec": models[best_model]["speed"],
|
49 |
+
"output": f"Sample output from {best_model}"
|
50 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|