Kunal Pai commited on
Commit
03de09a
·
1 Parent(s): 58408af

Add base models for Employee agents

Browse files
paper/conference_101719.tex CHANGED
@@ -119,6 +119,7 @@ The system uses a two-tiered hierarchy:
119
  \item Task Execution: Receive task, execute, return result.
120
  \item Resource Consumption: Associated costs (API, memory) tracked by system.
121
  \end{itemize}
 
122
  \end{itemize}
123
  This hierarchy facilitates task decomposition and result aggregation; the dynamic pool provides flexibility.
124
 
 
119
  \item Task Execution: Receive task, execute, return result.
120
  \item Resource Consumption: Associated costs (API, memory) tracked by system.
121
  \end{itemize}
122
+ Specialized employee agents are constructed using base models such as Mistral~7B~\cite{jiang2023mistral}, Llama~3~\cite{llama3herd}, Gemini~1.5~\cite{gemini1.5_report}, Qwen2.5~\cite{qwen2.5_report}, Qwen3~\cite{qwen3_blog}, and DeepSeek-R1~\cite{deepseekr1_report}, with the CEO agent configuring them via tailored system prompts.
123
  \end{itemize}
124
  This hierarchy facilitates task decomposition and result aggregation; the dynamic pool provides flexibility.
125
 
paper/references.bib CHANGED
@@ -394,3 +394,63 @@
394
  url={https://arxiv.org/abs/2407.03978},
395
  }
396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394
  url={https://arxiv.org/abs/2407.03978},
395
  }
396
 
397
+ @article{jiang2023mistral,
398
+ title={{Mistral 7B}},
399
+ author={Jiang, Albert Q and Xu, Alexandre and Lachaux, Arthur Mensch Guillaume Lample Nicol{\`a}s and Rozenberg, Fran{\c{c}}ois and Lacroix, Timoth{\'e}e and Lavril, Thibaut and Gaddipati, Teven Le Scao Eleonora and Ortiz, Lucile Saulnier Lixin and Tang, Dieuwke Hiemstra L{\'e}lio Renard and others},
400
+ year={2023},
401
+ eprint={2310.06825},
402
+ archivePrefix={arXiv},
403
+ primaryClass={cs.CL},
404
+ url={https://arxiv.org/abs/2310.06825},
405
+ }
406
+
407
+ @article{llama3herd,
408
+ title={{The Llama 3 Herd of Models}},
409
+ author={{Meta Llama Team}},
410
+ year={2024},
411
+ eprint={2407.21783},
412
+ archivePrefix={arXiv},
413
+ primaryClass={cs.CL},
414
+ url={https://arxiv.org/abs/2407.21783},
415
+ note={arXiv:2407.21783}
416
+ }
417
+
418
+ @article{gemini1.5_report,
419
+ title={{Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context}},
420
+ author={{Gemini Team}},
421
+ year={2024},
422
+ eprint={2403.05530},
423
+ archivePrefix={arXiv},
424
+ primaryClass={cs.CL},
425
+ url={https://arxiv.org/abs/2403.05530},
426
+ note={arXiv:2403.05530}
427
+ }
428
+
429
+ @article{qwen2.5_report,
430
+ title={{Qwen2.5 Technical Report}},
431
+ author={{Qwen Team} and Yang, An and others},
432
+ year={2024},
433
+ eprint={2412.15115},
434
+ archivePrefix={arXiv},
435
+ primaryClass={cs.CL},
436
+ url={https://arxiv.org/abs/2412.15115},
437
+ note={arXiv:2412.15115}
438
+ }
439
+
440
+ @misc{qwen3_blog,
441
+ title={{Qwen3: Think Deeper, Act Faster}},
442
+ author={{Qwen Team}},
443
+ howpublished={\url{https://qwenlm.github.io/blog/qwen3/}},
444
+ year={2025}
445
+ }
446
+
447
+ @article{deepseekr1_report,
448
+ title={{DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning}},
449
+ author={{DeepSeek-AI and others}},
450
+ year={2025},
451
+ eprint={2501.12948},
452
+ archivePrefix={arXiv},
453
+ primaryClass={cs.CL},
454
+ url={https://arxiv.org/abs/2501.12948},
455
+ note={arXiv:2501.12948}
456
+ }