Spaces:
Running
Running
from enum import Enum, auto | |
from typing import List | |
from google import genai | |
from google.genai import types | |
from google.genai.types import * | |
import os | |
from dotenv import load_dotenv | |
import sys | |
from src.manager.agent_manager import AgentManager | |
from src.manager.budget_manager import BudgetManager | |
from src.manager.tool_manager import ToolManager | |
from src.manager.utils.suppress_outputs import suppress_output | |
import logging | |
import gradio as gr | |
from sentence_transformers import SentenceTransformer | |
import torch | |
from src.tools.default_tools.memory_manager import MemoryManager | |
from pathlib import Path | |
from google.genai.errors import APIError | |
import backoff | |
import mimetypes | |
import json | |
import traceback | |
logger = logging.getLogger(__name__) | |
handler = logging.StreamHandler(sys.stdout) | |
# handler.setLevel(logging.DEBUG) | |
logger.addHandler(handler) | |
class Mode(Enum): | |
ENABLE_AGENT_CREATION = auto() | |
ENABLE_LOCAL_AGENTS = auto() | |
ENABLE_CLOUD_AGENTS = auto() | |
ENABLE_TOOL_CREATION = auto() | |
ENABLE_TOOL_INVOCATION = auto() | |
ENABLE_RESOURCE_BUDGET = auto() | |
ENABLE_ECONOMY_BUDGET = auto() | |
ENABLE_MEMORY = auto() | |
def format_tool_response(response, indent=2): | |
return json.dumps(response, indent=indent, ensure_ascii=False) | |
class GeminiManager: | |
def __init__(self, system_prompt_file="./src/models/system6.prompt", | |
gemini_model="gemini-2.5-pro-exp-03-25", | |
modes: List[Mode] = []): | |
self.input_tokens = 0 | |
self.output_tokens = 0 | |
load_dotenv() | |
self.budget_manager = BudgetManager() | |
self.toolsLoader: ToolManager = ToolManager() | |
self.agentManager: AgentManager = AgentManager() | |
self.API_KEY = os.getenv("GEMINI_KEY") | |
self.client = genai.Client(api_key=self.API_KEY) | |
self.model_name = gemini_model | |
self.memory_manager = MemoryManager() | |
with open(system_prompt_file, 'r', encoding="utf8") as f: | |
self.system_prompt = f.read() | |
self.messages = [] | |
self.set_modes(modes) | |
self.safety_settings = [ | |
{ | |
"category": "HARM_CATEGORY_HARASSMENT", | |
"threshold": "BLOCK_NONE", | |
}, | |
{ | |
"category": "HARM_CATEGORY_HATE_SPEECH", | |
"threshold": "BLOCK_NONE", | |
}, | |
{ | |
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", | |
"threshold": "BLOCK_NONE", | |
}, | |
{ | |
"category": "HARM_CATEGORY_DANGEROUS_CONTENT", | |
"threshold": "BLOCK_NONE", | |
}, | |
] | |
def get_current_modes(self): | |
return [mode.name for mode in self.modes] | |
def set_modes(self, modes: List[Mode]): | |
self.modes = modes | |
self.budget_manager.set_resource_budget_status( | |
self.check_mode(Mode.ENABLE_RESOURCE_BUDGET)) | |
self.budget_manager.set_expense_budget_status( | |
self.check_mode(Mode.ENABLE_ECONOMY_BUDGET)) | |
self.toolsLoader.set_creation_mode( | |
self.check_mode(Mode.ENABLE_TOOL_CREATION)) | |
self.toolsLoader.set_invocation_mode( | |
self.check_mode(Mode.ENABLE_TOOL_INVOCATION)) | |
self.agentManager.set_creation_mode( | |
self.check_mode(Mode.ENABLE_AGENT_CREATION)) | |
self.agentManager.set_local_invocation_mode( | |
self.check_mode(Mode.ENABLE_LOCAL_AGENTS)) | |
self.agentManager.set_cloud_invocation_mode( | |
self.check_mode(Mode.ENABLE_CLOUD_AGENTS)) | |
def check_mode(self, mode: Mode): | |
return mode in self.modes | |
def generate_response(self, messages): | |
tools = self.toolsLoader.getTools() | |
response = self.client.models.count_tokens( | |
model=self.model_name, | |
contents=messages, | |
) | |
self.budget_manager.add_to_expense_budget( | |
response.total_tokens * 0.10/1000000 # Assuming $0.10 per million tokens | |
) | |
self.input_tokens += response.total_tokens | |
return self.client.models.generate_content_stream( | |
model=self.model_name, | |
contents=messages, | |
config=types.GenerateContentConfig( | |
system_instruction=self.system_prompt, | |
temperature=0.2, | |
tools=tools, | |
safety_settings=self.safety_settings, | |
), | |
) | |
def handle_tool_calls(self, function_calls): | |
parts = [] | |
i = 0 | |
for function_call in function_calls: | |
title = "" | |
thinking = "" | |
toolResponse = None | |
logger.info( | |
f"Function Name: {function_call.name}, Arguments: {function_call.args}") | |
title = f"Invoking `{function_call.name}` with \n```json\n{format_tool_response(function_call.args)}\n```\n" | |
yield { | |
"role": "assistant", | |
"content": thinking, | |
"metadata": { | |
"title": title, | |
"id": i, | |
"status": "pending", | |
} | |
} | |
try: | |
self.input_tokens += len(repr(function_call).split()) | |
toolResponse = self.toolsLoader.runTool( | |
function_call.name, function_call.args) | |
except Exception as e: | |
logger.warning(f"Error running tool: {e}") | |
toolResponse = { | |
"status": "error", | |
"message": f"Tool `{function_call.name}` failed to run.", | |
"output": str(e), | |
} | |
logger.debug(f"Tool Response: {toolResponse}") | |
thinking += f"Tool responded with \n```json\n{format_tool_response(toolResponse)}\n```\n" | |
yield { | |
"role": "assistant", | |
"content": thinking, | |
"metadata": { | |
"title": title, | |
"id": i, | |
"status": "done", | |
} | |
} | |
tool_content = types.Part.from_function_response( | |
name=function_call.name, | |
response={"result": toolResponse}) | |
try: | |
if function_call.name == "ToolCreator" or function_call.name == "ToolDeletor": | |
self.toolsLoader.load_tools() | |
except Exception as e: | |
logger.info( | |
f"Error loading tools: {str(e)}. Deleting the tool.") | |
yield { | |
"role": "assistant", | |
"content": f"Error loading tools: {str(e)}. Deleting the tool.\n", | |
"metadata": { | |
"title": "Trying to load the newly created tool", | |
"id": i, | |
"status": "done", | |
} | |
} | |
# delete the created tool | |
self.toolsLoader.delete_tool( | |
toolResponse['output']['tool_name'], toolResponse['output']['tool_file_path']) | |
tool_content = types.Part.from_function_response( | |
name=function_call.name, | |
response={"result": f"{function_call.name} with {function_call.args} doesn't follow the required format, please read the other tool implementations for reference." + str(e)}) | |
parts.append(tool_content) | |
i += 1 | |
self.output_tokens += len(repr(parts).split()) | |
yield { | |
"role": "tool", | |
"content": repr(types.Content( | |
role='model' if self.model_name == "gemini-2.5-pro-exp-03-25" else 'tool', | |
parts=parts | |
)) | |
} | |
def format_chat_history(self, messages=[]): | |
formatted_history = [] | |
for message in messages: | |
# Skip thinking messages (messages with metadata) | |
if not ((message.get("role") == "assistant" and "metadata" in message | |
and message["metadata"] is not None)): | |
role = "model" | |
match message.get("role"): | |
case "user": | |
role = "user" | |
if isinstance(message["content"], tuple): | |
path = message["content"][0] | |
try: | |
image_bytes = open(path, "rb").read() | |
mime_type, _ = mimetypes.guess_type(path) | |
parts = [ | |
types.Part.from_bytes( | |
data=image_bytes, | |
mime_type=mime_type | |
), | |
] | |
except Exception as e: | |
logger.error(f"Error uploading file: {e}") | |
parts = [types.Part.from_text( | |
text="Error uploading file: "+str(e))] | |
formatted_history.append( | |
types.Content( | |
role=role, | |
parts=parts | |
)) | |
continue | |
else: | |
parts = [types.Part.from_text( | |
text=message.get("content", ""))] | |
case "memories": | |
role = "user" | |
parts = [types.Part.from_text( | |
text="Here are the relevant memories for the user's query: "+message.get("content", ""))] | |
case "tool": | |
role = "tool" | |
formatted_history.append( | |
eval(message.get("content", ""))) | |
continue | |
case "function_call": | |
role = "model" | |
formatted_history.append( | |
eval(message.get("content", ""))) | |
continue | |
case _: | |
role = "model" | |
content = message.get("content", "") | |
if content.strip() == "": | |
print("Empty message received: ", message) | |
continue | |
parts = [types.Part.from_text( | |
text=content)] | |
formatted_history.append(types.Content( | |
role=role, | |
parts=parts | |
)) | |
return formatted_history | |
def get_k_memories(self, query, k=5, threshold=0.0): | |
raw_memories = MemoryManager().get_memories() | |
memories = [] | |
for i in range(len(raw_memories)): | |
memories.append(raw_memories[i]['memory']) | |
if len(memories) == 0: | |
return [] | |
top_k = min(k, len(memories)) | |
# Semantic Retrieval with GPU | |
if torch.cuda.is_available(): | |
device = 'cuda' | |
elif torch.backends.mps.is_available() and torch.backends.mps.is_built(): | |
device = 'mps' | |
else: | |
device = 'cpu' | |
model = SentenceTransformer('all-MiniLM-L6-v2', device=device) | |
doc_embeddings = model.encode( | |
memories, convert_to_tensor=True, device=device) | |
query_embedding = model.encode( | |
query, convert_to_tensor=True, device=device) | |
similarity_scores = model.similarity( | |
query_embedding, doc_embeddings)[0] | |
scores, indices = torch.topk(similarity_scores, k=top_k) | |
results = [] | |
for score, idx in zip(scores, indices): | |
if score >= threshold: | |
results.append(raw_memories[idx.item()]) | |
return results | |
def run(self, messages): | |
try: | |
if self.check_mode(Mode.ENABLE_MEMORY) and len(messages) > 0: | |
memories = self.get_k_memories( | |
messages[-1]['content'], k=5, threshold=0.1) | |
if len(memories) > 0: | |
messages.append({ | |
"role": "memories", | |
"content": f"{memories}", | |
}) | |
messages.append({ | |
"role": "assistant", | |
"content": f"Memories: \n```json\n{format_tool_response(memories)}\n```\n", | |
"metadata": {"title": "Memories"} | |
}) | |
yield messages | |
except Exception as e: | |
pass | |
yield from self.invoke_manager(messages) | |
print("Tokens used: Input: {}, Output: {}".format( | |
self.input_tokens, self.output_tokens)) | |
def invoke_manager(self, messages): | |
chat_history = self.format_chat_history(messages) | |
logger.debug(f"Chat history: {chat_history}") | |
try: | |
response_stream = self.generate_response(chat_history) | |
full_text = "" # Accumulate the text from the stream | |
function_calls = [] | |
function_call_requests = [] | |
for chunk in response_stream: | |
if chunk.text: | |
full_text += chunk.text | |
if full_text.strip() != "": | |
yield messages + [{ | |
"role": "assistant", | |
"content": full_text | |
}] | |
else: | |
print("Empty chunk received") | |
print(chunk) | |
for candidate in chunk.candidates: | |
if candidate.content and candidate.content.parts: | |
has_function_call = False | |
for part in candidate.content.parts: | |
if part.function_call: | |
has_function_call = True | |
function_calls.append(part.function_call) | |
if has_function_call: | |
function_call_requests.append({ | |
"role": "function_call", | |
"content": repr(candidate.content), | |
}) | |
if full_text.strip() != "": | |
messages.append({ | |
"role": "assistant", | |
"content": full_text, | |
}) | |
self.output_tokens += len(full_text.split()) | |
self.budget_manager.add_to_expense_budget( | |
len(full_text.split()) * 0.40/1000000 # Assuming $0.40 per million tokens | |
) | |
if function_call_requests: | |
messages = messages + function_call_requests | |
yield messages | |
except Exception as e: | |
traceback.print_exc(file=sys.stdout) | |
print(messages) | |
print(chat_history) | |
messages.append({ | |
"role": "assistant", | |
"content": f"Error generating response: {str(e)}", | |
"metadata": { | |
"title": "Error generating response", | |
"id": 0, | |
"status": "done" | |
} | |
}) | |
logger.error(f"Error generating response{e}") | |
yield messages | |
return messages | |
# Check if any text was received | |
if len(full_text.strip()) == 0 and len(function_calls) == 0: | |
messages.append({ | |
"role": "assistant", | |
"content": "No response from the model.", | |
"metadata": {"title": "No response from the model."} | |
}) | |
if function_calls and len(function_calls) > 0: | |
for call in self.handle_tool_calls(function_calls): | |
yield messages + [call] | |
if (call.get("role") == "tool" | |
or (call.get("role") == "assistant" and call.get("metadata", {}).get("status") == "done")): | |
messages.append(call) | |
yield from self.invoke_manager(messages) | |
else: | |
yield messages | |