hashiruAI / src /manager /manager.py
helloparthshah's picture
Tracking budget for manager too
1c31898
raw
history blame
16.4 kB
from enum import Enum, auto
from typing import List
from google import genai
from google.genai import types
from google.genai.types import *
import os
from dotenv import load_dotenv
import sys
from src.manager.agent_manager import AgentManager
from src.manager.budget_manager import BudgetManager
from src.manager.tool_manager import ToolManager
from src.manager.utils.suppress_outputs import suppress_output
import logging
import gradio as gr
from sentence_transformers import SentenceTransformer
import torch
from src.tools.default_tools.memory_manager import MemoryManager
from pathlib import Path
from google.genai.errors import APIError
import backoff
import mimetypes
import json
import traceback
logger = logging.getLogger(__name__)
handler = logging.StreamHandler(sys.stdout)
# handler.setLevel(logging.DEBUG)
logger.addHandler(handler)
class Mode(Enum):
ENABLE_AGENT_CREATION = auto()
ENABLE_LOCAL_AGENTS = auto()
ENABLE_CLOUD_AGENTS = auto()
ENABLE_TOOL_CREATION = auto()
ENABLE_TOOL_INVOCATION = auto()
ENABLE_RESOURCE_BUDGET = auto()
ENABLE_ECONOMY_BUDGET = auto()
ENABLE_MEMORY = auto()
def format_tool_response(response, indent=2):
return json.dumps(response, indent=indent, ensure_ascii=False)
class GeminiManager:
def __init__(self, system_prompt_file="./src/models/system6.prompt",
gemini_model="gemini-2.5-pro-exp-03-25",
modes: List[Mode] = []):
self.input_tokens = 0
self.output_tokens = 0
load_dotenv()
self.budget_manager = BudgetManager()
self.toolsLoader: ToolManager = ToolManager()
self.agentManager: AgentManager = AgentManager()
self.API_KEY = os.getenv("GEMINI_KEY")
self.client = genai.Client(api_key=self.API_KEY)
self.model_name = gemini_model
self.memory_manager = MemoryManager()
with open(system_prompt_file, 'r', encoding="utf8") as f:
self.system_prompt = f.read()
self.messages = []
self.set_modes(modes)
self.safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE",
},
]
def get_current_modes(self):
return [mode.name for mode in self.modes]
def set_modes(self, modes: List[Mode]):
self.modes = modes
self.budget_manager.set_resource_budget_status(
self.check_mode(Mode.ENABLE_RESOURCE_BUDGET))
self.budget_manager.set_expense_budget_status(
self.check_mode(Mode.ENABLE_ECONOMY_BUDGET))
self.toolsLoader.set_creation_mode(
self.check_mode(Mode.ENABLE_TOOL_CREATION))
self.toolsLoader.set_invocation_mode(
self.check_mode(Mode.ENABLE_TOOL_INVOCATION))
self.agentManager.set_creation_mode(
self.check_mode(Mode.ENABLE_AGENT_CREATION))
self.agentManager.set_local_invocation_mode(
self.check_mode(Mode.ENABLE_LOCAL_AGENTS))
self.agentManager.set_cloud_invocation_mode(
self.check_mode(Mode.ENABLE_CLOUD_AGENTS))
def check_mode(self, mode: Mode):
return mode in self.modes
@backoff.on_exception(backoff.expo,
APIError,
max_tries=3,
jitter=None)
def generate_response(self, messages):
tools = self.toolsLoader.getTools()
response = self.client.models.count_tokens(
model=self.model_name,
contents=messages,
)
self.budget_manager.add_to_expense_budget(
response.total_tokens * 0.10/1000000 # Assuming $0.10 per million tokens
)
self.input_tokens += response.total_tokens
return self.client.models.generate_content_stream(
model=self.model_name,
contents=messages,
config=types.GenerateContentConfig(
system_instruction=self.system_prompt,
temperature=0.2,
tools=tools,
safety_settings=self.safety_settings,
),
)
def handle_tool_calls(self, function_calls):
parts = []
i = 0
for function_call in function_calls:
title = ""
thinking = ""
toolResponse = None
logger.info(
f"Function Name: {function_call.name}, Arguments: {function_call.args}")
title = f"Invoking `{function_call.name}` with \n```json\n{format_tool_response(function_call.args)}\n```\n"
yield {
"role": "assistant",
"content": thinking,
"metadata": {
"title": title,
"id": i,
"status": "pending",
}
}
try:
self.input_tokens += len(repr(function_call).split())
toolResponse = self.toolsLoader.runTool(
function_call.name, function_call.args)
except Exception as e:
logger.warning(f"Error running tool: {e}")
toolResponse = {
"status": "error",
"message": f"Tool `{function_call.name}` failed to run.",
"output": str(e),
}
logger.debug(f"Tool Response: {toolResponse}")
thinking += f"Tool responded with \n```json\n{format_tool_response(toolResponse)}\n```\n"
yield {
"role": "assistant",
"content": thinking,
"metadata": {
"title": title,
"id": i,
"status": "done",
}
}
tool_content = types.Part.from_function_response(
name=function_call.name,
response={"result": toolResponse})
try:
if function_call.name == "ToolCreator" or function_call.name == "ToolDeletor":
self.toolsLoader.load_tools()
except Exception as e:
logger.info(
f"Error loading tools: {str(e)}. Deleting the tool.")
yield {
"role": "assistant",
"content": f"Error loading tools: {str(e)}. Deleting the tool.\n",
"metadata": {
"title": "Trying to load the newly created tool",
"id": i,
"status": "done",
}
}
# delete the created tool
self.toolsLoader.delete_tool(
toolResponse['output']['tool_name'], toolResponse['output']['tool_file_path'])
tool_content = types.Part.from_function_response(
name=function_call.name,
response={"result": f"{function_call.name} with {function_call.args} doesn't follow the required format, please read the other tool implementations for reference." + str(e)})
parts.append(tool_content)
i += 1
self.output_tokens += len(repr(parts).split())
yield {
"role": "tool",
"content": repr(types.Content(
role='model' if self.model_name == "gemini-2.5-pro-exp-03-25" else 'tool',
parts=parts
))
}
def format_chat_history(self, messages=[]):
formatted_history = []
for message in messages:
# Skip thinking messages (messages with metadata)
if not ((message.get("role") == "assistant" and "metadata" in message
and message["metadata"] is not None)):
role = "model"
match message.get("role"):
case "user":
role = "user"
if isinstance(message["content"], tuple):
path = message["content"][0]
try:
image_bytes = open(path, "rb").read()
mime_type, _ = mimetypes.guess_type(path)
parts = [
types.Part.from_bytes(
data=image_bytes,
mime_type=mime_type
),
]
except Exception as e:
logger.error(f"Error uploading file: {e}")
parts = [types.Part.from_text(
text="Error uploading file: "+str(e))]
formatted_history.append(
types.Content(
role=role,
parts=parts
))
continue
else:
parts = [types.Part.from_text(
text=message.get("content", ""))]
case "memories":
role = "user"
parts = [types.Part.from_text(
text="Here are the relevant memories for the user's query: "+message.get("content", ""))]
case "tool":
role = "tool"
formatted_history.append(
eval(message.get("content", "")))
continue
case "function_call":
role = "model"
formatted_history.append(
eval(message.get("content", "")))
continue
case _:
role = "model"
content = message.get("content", "")
if content.strip() == "":
print("Empty message received: ", message)
continue
parts = [types.Part.from_text(
text=content)]
formatted_history.append(types.Content(
role=role,
parts=parts
))
return formatted_history
def get_k_memories(self, query, k=5, threshold=0.0):
raw_memories = MemoryManager().get_memories()
memories = []
for i in range(len(raw_memories)):
memories.append(raw_memories[i]['memory'])
if len(memories) == 0:
return []
top_k = min(k, len(memories))
# Semantic Retrieval with GPU
if torch.cuda.is_available():
device = 'cuda'
elif torch.backends.mps.is_available() and torch.backends.mps.is_built():
device = 'mps'
else:
device = 'cpu'
model = SentenceTransformer('all-MiniLM-L6-v2', device=device)
doc_embeddings = model.encode(
memories, convert_to_tensor=True, device=device)
query_embedding = model.encode(
query, convert_to_tensor=True, device=device)
similarity_scores = model.similarity(
query_embedding, doc_embeddings)[0]
scores, indices = torch.topk(similarity_scores, k=top_k)
results = []
for score, idx in zip(scores, indices):
if score >= threshold:
results.append(raw_memories[idx.item()])
return results
def run(self, messages):
try:
if self.check_mode(Mode.ENABLE_MEMORY) and len(messages) > 0:
memories = self.get_k_memories(
messages[-1]['content'], k=5, threshold=0.1)
if len(memories) > 0:
messages.append({
"role": "memories",
"content": f"{memories}",
})
messages.append({
"role": "assistant",
"content": f"Memories: \n```json\n{format_tool_response(memories)}\n```\n",
"metadata": {"title": "Memories"}
})
yield messages
except Exception as e:
pass
yield from self.invoke_manager(messages)
print("Tokens used: Input: {}, Output: {}".format(
self.input_tokens, self.output_tokens))
def invoke_manager(self, messages):
chat_history = self.format_chat_history(messages)
logger.debug(f"Chat history: {chat_history}")
try:
response_stream = self.generate_response(chat_history)
full_text = "" # Accumulate the text from the stream
function_calls = []
function_call_requests = []
for chunk in response_stream:
if chunk.text:
full_text += chunk.text
if full_text.strip() != "":
yield messages + [{
"role": "assistant",
"content": full_text
}]
else:
print("Empty chunk received")
print(chunk)
for candidate in chunk.candidates:
if candidate.content and candidate.content.parts:
has_function_call = False
for part in candidate.content.parts:
if part.function_call:
has_function_call = True
function_calls.append(part.function_call)
if has_function_call:
function_call_requests.append({
"role": "function_call",
"content": repr(candidate.content),
})
if full_text.strip() != "":
messages.append({
"role": "assistant",
"content": full_text,
})
self.output_tokens += len(full_text.split())
self.budget_manager.add_to_expense_budget(
len(full_text.split()) * 0.40/1000000 # Assuming $0.40 per million tokens
)
if function_call_requests:
messages = messages + function_call_requests
yield messages
except Exception as e:
traceback.print_exc(file=sys.stdout)
print(messages)
print(chat_history)
messages.append({
"role": "assistant",
"content": f"Error generating response: {str(e)}",
"metadata": {
"title": "Error generating response",
"id": 0,
"status": "done"
}
})
logger.error(f"Error generating response{e}")
yield messages
return messages
# Check if any text was received
if len(full_text.strip()) == 0 and len(function_calls) == 0:
messages.append({
"role": "assistant",
"content": "No response from the model.",
"metadata": {"title": "No response from the model."}
})
if function_calls and len(function_calls) > 0:
for call in self.handle_tool_calls(function_calls):
yield messages + [call]
if (call.get("role") == "tool"
or (call.get("role") == "assistant" and call.get("metadata", {}).get("status") == "done")):
messages.append(call)
yield from self.invoke_manager(messages)
else:
yield messages