Spaces:
Running
Running
import importlib | |
__all__ = ['AgentCreator'] | |
class AgentCreator(): | |
dependencies = ["ollama==0.4.7", | |
"pydantic==2.11.1", | |
"pydantic_core==2.33.0"] | |
inputSchema = { | |
"name": "AgentCreator", | |
"description": "Creates an AI agent for you. Please make sure to invoke the created agent using the AskAgent tool.", | |
"parameters": { | |
"type": "object", | |
"properties":{ | |
"agent_name": { | |
"type": "string", | |
"description": "Name of the AI agent that is to be created. This name cannot have spaces or special characters. It should be a single word.", | |
}, | |
"base_model": { | |
"type": "string", | |
"description": "A base model from which the new agent mode is to be created. Available models are: llama3.2" | |
}, | |
"system_prompt": { | |
"type": "string", | |
"description": "This is the system prompt that will be used to create the agent. It should be a string that describes the role of the agent and its capabilities." | |
}, | |
"description": { | |
"type": "string", | |
"description": "Description of the agent. This is a string that describes the agent and its capabilities. It should be a single line description.", | |
}, | |
}, | |
"required": ["agent_name", "base_model", "system_prompt", "description"], | |
} | |
} | |
def __init__(self): | |
pass | |
def does_agent_exist(self, agent_name): | |
ollama = importlib.import_module("ollama") | |
all_agents = [a.model for a in ollama.list().models] | |
if agent_name in all_agents or f'{agent_name}:latest' in all_agents: | |
return True | |
return False | |
def run(self, **kwargs): | |
print("Running Agent Creator") | |
agent_name= kwargs.get("agent_name") | |
base_model = kwargs.get("base_model") | |
system_prompt = kwargs.get("system_prompt") | |
ollama = importlib.import_module("ollama") | |
json = importlib.import_module("json") | |
if self.does_agent_exist(agent_name): | |
return { | |
"status": "error", | |
"message": "Agent already exists", | |
"output": None | |
} | |
ollama_response = ollama.create( | |
model = agent_name, | |
from_ = base_model, | |
system = system_prompt, | |
stream = False | |
) | |
with open("./models/models.json", "r", encoding="utf8") as f: | |
models = f.read() | |
models = json.loads(models) | |
models[agent_name] = { | |
"base_model": base_model, | |
"description": kwargs.get("description") | |
} | |
with open("./models/models.json", "w", encoding="utf8") as f: | |
f.write(json.dumps(models, indent=4)) | |
if "success" in ollama_response["status"]: | |
return { | |
"status": "success", | |
"message": "Agent successfully created", | |
} | |
else: | |
return { | |
"status": "error", | |
"message": "Agent creation failed", | |
} |