hashiruAI / src /cost_benefit.py
saisha09's picture
cost_benefit modified
703f2c8
raw
history blame
2.13 kB
import argparse
import subprocess
import time
import requests
def detect_available_budget(runtime_env: str) -> int:
import torch
if "local" in runtime_env and torch.cuda.is_available():
total_vram_mb = torch.cuda.get_device_properties(0).total_memory // (1024 ** 2)
return min(total_vram_mb, 100)
else:
return 100
def get_best_model(runtime_env: str, use_local_only=False, use_api_only=False) -> dict:
# Model info (cost, tokens/sec, type)
static_costs = {
"llama3.2": {"size": 20, "token_cost": 0.0001, "tokens_sec": 30, "type": "local"},
"mistral": {"size": 40, "token_cost": 0.0002, "tokens_sec": 50, "type": "local"},
"gemini-2.0-flash": {"size": 60, "token_cost": 0.0005, "tokens_sec": 60, "type": "api"},
"gemini-2.5-pro-preview-03-25": {"size": 80, "token_cost": 0.002, "tokens_sec": 45, "type": "api"}
}
def detect_available_budget(runtime_env: str) -> int:
import torch
if "local" in runtime_env and torch.cuda.is_available():
total_vram_mb = torch.cuda.get_device_properties(0).total_memory // (1024 ** 2)
return min(total_vram_mb, 100)
else:
return 100
budget = detect_available_budget(runtime_env)
best_model = None
best_speed = -1
for model, info in static_costs.items():
if info["size"] > budget:
continue
if use_local_only and info["type"] != "local":
continue
if use_api_only and info["type"] != "api":
continue
if info["tokens_sec"] > best_speed:
best_model = model
best_speed = info["tokens_sec"]
if not best_model:
return {
"model": "llama3.2",
"token_cost": static_costs["llama3.2"]["token_cost"],
"tokens_sec": static_costs["llama3.2"]["tokens_sec"],
"note": "Defaulted due to no models fitting filters"
}
return {
"model": best_model,
"token_cost": static_costs[best_model]["token_cost"],
"tokens_sec": static_costs[best_model]["tokens_sec"]
}