Spaces:
Running
Running
import argparse | |
import subprocess | |
import time | |
import requests | |
def detect_available_budget(runtime_env: str) -> int: | |
import torch | |
if "local" in runtime_env and torch.cuda.is_available(): | |
total_vram_mb = torch.cuda.get_device_properties(0).total_memory // (1024 ** 2) | |
return min(total_vram_mb, 100) | |
else: | |
return 100 | |
def get_best_model(runtime_env: str, use_local_only=False, use_api_only=False) -> dict: | |
# Model info (cost, tokens/sec, type) | |
static_costs = { | |
"llama3.2": {"size": 20, "token_cost": 0.0001, "tokens_sec": 30, "type": "local"}, | |
"mistral": {"size": 40, "token_cost": 0.0002, "tokens_sec": 50, "type": "local"}, | |
"gemini-2.0-flash": {"size": 60, "token_cost": 0.0005, "tokens_sec": 60, "type": "api"}, | |
"gemini-2.5-pro-preview-03-25": {"size": 80, "token_cost": 0.002, "tokens_sec": 45, "type": "api"} | |
} | |
def detect_available_budget(runtime_env: str) -> int: | |
import torch | |
if "local" in runtime_env and torch.cuda.is_available(): | |
total_vram_mb = torch.cuda.get_device_properties(0).total_memory // (1024 ** 2) | |
return min(total_vram_mb, 100) | |
else: | |
return 100 | |
budget = detect_available_budget(runtime_env) | |
best_model = None | |
best_speed = -1 | |
for model, info in static_costs.items(): | |
if info["size"] > budget: | |
continue | |
if use_local_only and info["type"] != "local": | |
continue | |
if use_api_only and info["type"] != "api": | |
continue | |
if info["tokens_sec"] > best_speed: | |
best_model = model | |
best_speed = info["tokens_sec"] | |
if not best_model: | |
return { | |
"model": "llama3.2", | |
"token_cost": static_costs["llama3.2"]["token_cost"], | |
"tokens_sec": static_costs["llama3.2"]["tokens_sec"], | |
"note": "Defaulted due to no models fitting filters" | |
} | |
return { | |
"model": best_model, | |
"token_cost": static_costs[best_model]["token_cost"], | |
"tokens_sec": static_costs[best_model]["tokens_sec"] | |
} | |