Spaces:
Running
Running
import importlib | |
from collections import defaultdict | |
import re | |
import time | |
__all__ = ['GetWebsiteTool'] | |
class GetWebsiteTool(): | |
dependencies = ["requests", "beautifulsoup4==4.13.3"] | |
inputSchema = { | |
"name": "GetWebsiteTool", | |
"description": "Returns a summary of the content of a website based on a query string.", | |
"parameters": { | |
"type": "object", | |
"properties": { | |
"url": { | |
"type": "string", | |
"description": "The URL of the website to fetch content from.", | |
}, | |
}, | |
"required": ["url"], | |
} | |
} | |
def summarize_text(self, text): | |
# Clean the text more thoroughly | |
text = re.sub(r'\[[0-9]*\]', ' ', text) | |
text = re.sub(r'\s+', ' ', text) | |
text = re.sub(r'[^a-zA-Z0-9.\s]', '', text) # Remove special characters except periods | |
# Tokenize into sentences | |
sentences = re.split(r'(?<=[.!?])\s+', text) | |
sentences = [s.strip() for s in sentences if s] | |
# Calculate word frequencies | |
word_frequencies = defaultdict(int) | |
for sentence in sentences: | |
words = sentence.lower().split() | |
for word in words: | |
word_frequencies[word] += 1 | |
# Normalize word frequencies | |
total_words = sum(word_frequencies.values()) | |
if total_words > 0: | |
for word in word_frequencies: | |
word_frequencies[word] /= total_words | |
# Calculate sentence scores based on word frequencies, sentence length, and coherence | |
sentence_scores = {} | |
for i, sentence in enumerate(sentences): | |
score = 0 | |
words = sentence.lower().split() | |
for word in words: | |
score += word_frequencies[word] | |
# Consider sentence length | |
sentence_length_factor = 1 - abs(len(words) - 15) / 15 # Prefer sentences around 15 words | |
score += sentence_length_factor * 0.1 | |
# Add a coherence score | |
if i > 0 and sentences[i-1] in sentence_scores: | |
previous_sentence_words = sentences[i-1].lower().split() | |
common_words = set(words) & set(previous_sentence_words) | |
coherence_score = len(common_words) / len(words) | |
score += coherence_score * 0.1 | |
sentence_scores[sentence] = score | |
# Get the top 3 sentences with the highest scores | |
ranked_sentences = sorted(sentence_scores, key=sentence_scores.get, reverse=True)[:3] | |
# Generate the summary | |
summary = ". ".join(ranked_sentences) + "." | |
return summary | |
def run(self, **kwargs): | |
headers = { | |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:137.0) Gecko/20100101 Firefox/137.0', | |
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', | |
'Accept-Language': 'en-US,en;q=0.5', | |
'DNT': '1', | |
'Sec-GPC': '1', | |
'Connection': 'keep-alive', | |
'Upgrade-Insecure-Requests': '1', | |
'Sec-Fetch-Dest': 'document', | |
'Sec-Fetch-Mode': 'navigate', | |
'Sec-Fetch-Site': 'none', | |
'Sec-Fetch-User': '?1', | |
'Priority': 'u=0, i', | |
} | |
print("Running web search") | |
url = kwargs.get("url") | |
if not url: | |
return { | |
"status": "error", | |
"message": "Missing required parameters: 'url'", | |
"output": None | |
} | |
output = None | |
requests = importlib.import_module("requests") | |
bs4 = importlib.import_module("bs4") | |
BeautifulSoup = bs4.BeautifulSoup | |
try: | |
response = requests.get(url, headers=headers, timeout=10) | |
if response.status_code == 200: | |
# Parse the content using BeautifulSoup | |
soup = BeautifulSoup(response.content, 'html.parser') | |
# Extract text from the parsed HTML | |
text = soup.get_text() | |
# Summarize the text | |
output = self.summarize_text(text) | |
else: | |
return { | |
"status": "error", | |
"message": f"Failed to fetch content from {url}. Status code: {response.status_code}", | |
"output": None | |
} | |
return { | |
"status": "success", | |
"message": "Search completed successfully", | |
"output": output, | |
} | |
except Exception as e: | |
return { | |
"status": "error", | |
"message": str(e), | |
"output": None | |
} | |