Spaces:
Running
Running
import argparse | |
import subprocess | |
import time | |
import requests | |
def detect_available_budget(runtime_env: str) -> int: | |
""" | |
Return an approximate VRAM‑based budget (MB) when running locally, | |
else default to 100. | |
""" | |
import torch | |
if "local" in runtime_env and torch.cuda.is_available(): | |
total_vram_mb = torch.cuda.get_device_properties(0).total_memory // (1024 ** 2) | |
return min(total_vram_mb, 100) | |
return 100 | |
def get_best_model(runtime_env: str, *, use_local_only: bool = False, use_api_only: bool = False) -> dict: | |
""" | |
Pick the fastest model that fits in the detected budget while | |
respecting the locality filters. | |
""" | |
static_costs = { | |
"llama3.2": {"size": 20, "token_cost": 0.0001, "tokens_sec": 30, "type": "local"}, | |
"mistral": {"size": 40, "token_cost": 0.0002, "tokens_sec": 50, "type": "local"}, | |
"gemini-2.0-flash": {"size": 60, "token_cost": 0.0005, "tokens_sec": 60, "type": "api"}, | |
"gemini-2.5-pro-preview-03-25": {"size": 80, "token_cost": 0.002 , "tokens_sec": 45, "type": "api"}, | |
} | |
budget = detect_available_budget(runtime_env) | |
best_model, best_speed = None, -1 | |
for model, info in static_costs.items(): | |
if info["size"] > budget: | |
continue | |
if use_local_only and info["type"] != "local": | |
continue | |
if use_api_only and info["type"] != "api": | |
continue | |
if info["tokens_sec"] > best_speed: | |
best_model, best_speed = model, info["tokens_sec"] | |
chosen = best_model or "llama3.2" # sensible default | |
return { | |
"model": chosen, | |
"token_cost": static_costs[chosen]["token_cost"], | |
"tokens_sec": static_costs[chosen]["tokens_sec"], | |
"note": None if best_model else "Defaulted because no model met the constraints", | |
} | |