File size: 5,527 Bytes
576227b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from google import genai
from google.genai import types
import os
from dotenv import load_dotenv
import sys
from src.tool_loader import ToolLoader
from src.utils.suppress_outputs import suppress_output
import logging

logger = logging.getLogger(__name__)
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.INFO)
logger.addHandler(handler)

class GeminiManager:
    def __init__(self, toolsLoader: ToolLoader, system_prompt_file="./models/system3.prompt", gemini_model="gemini-2.5-pro-exp-03-25"):
        load_dotenv()
        self.API_KEY = os.getenv("GEMINI_KEY")
        self.client = genai.Client(api_key=self.API_KEY)
        self.toolsLoader: ToolLoader = toolsLoader
        self.toolsLoader.load_tools()
        self.model_name = gemini_model
        with open(system_prompt_file, 'r', encoding="utf8") as f:
            self.system_prompt = f.read()

    def generate_response(self, messages):
        return self.client.models.generate_content(
                #model='gemini-2.5-pro-preview-03-25',
                model=self.model_name,
                #model='gemini-2.5-pro-exp-03-25',
                #model='gemini-2.0-flash',
                contents=messages,
                config=types.GenerateContentConfig(
                    system_instruction=self.system_prompt,
                    temperature=0.2,
                    tools=self.toolsLoader.getTools(),
                ),
            )
    
    def handle_tool_calls(self, response):
        parts = []
        for function_call in response.function_calls:
            toolResponse = None
            logger.info(f"Function Name: {function_call.name}, Arguments: {function_call.args}")
            try:
                toolResponse = self.toolsLoader.runTool(function_call.name, function_call.args)
            except Exception as e:
                logger.warning(f"Error running tool: {e}")
                toolResponse = {
                    "status": "error",
                    "message": f"Tool {function_call.name} failed to run.",
                    "output": str(e),
                }
            logger.debug(f"Tool Response: {toolResponse}")
            tool_content = types.Part.from_function_response(
                    name=function_call.name,
                    response = {"result":toolResponse})
            try:
                self.toolsLoader.load_tools()
            except Exception as e:
                logger.info(f"Error loading tools: {e}. Deleting the tool.")
                # delete the created tool
                self.toolsLoader.delete_tool(toolResponse['output']['tool_name'], toolResponse['output']['tool_file_path'])
                tool_content = types.Part.from_function_response(
                        name=function_call.name,
                        response={"result":f"{function_call.name} with {function_call.args} doesn't follow the required format, please read the other tool implementations for reference." + str(e)})
            parts.append(tool_content)
        return types.Content(
            role='model' if self.model_name == "gemini-2.5-pro-exp-03-25" else 'tool',
            parts=parts
        )
    
    def run(self, messages):
        try:
            response = suppress_output(self.generate_response)(messages)
        except Exception as e:
            logger.debug(f"Error generating response: {e}")
            shouldRetry = input("An error occurred. Do you want to retry? (y/n): ")
            if shouldRetry.lower() == "y":
                return self.run(messages)
            else:
                print("Ending the conversation.")
                return messages

        logger.debug(f"Response: {response}")
        
        if (not response.text and not response.function_calls):
            print("No response from the model.")
        
        # Attach the llm response to the messages
        if response.text is not None:
            print("CEO:", response.text)
            assistant_content = types.Content(
                role='model' if self.model_name == "gemini-2.5-pro-exp-03-25" else 'assistant',
                parts=[types.Part.from_text(text=response.text)],
            )
            messages.append(assistant_content)
            
        # Attach the function call response to the messages
        if response.candidates[0].content and response.candidates[0].content.parts:
            messages.append(response.candidates[0].content)
            
        # Invoke the function calls if any and attach the response to the messages
        if response.function_calls:
            messages.append(self.handle_tool_calls(response))
            shouldContinue = input("Should I continue? (y/n): ")
            if shouldContinue.lower() == "y":
                return self.run(messages)
            else:
                print("Ending the conversation.")
                return messages
        else:
            logger.debug("No tool calls found in the response.")
            # Start the loop again
            return self.start_conversation(messages)
    
    def start_conversation(self, messages=[]):
        question = input("User: ")
        if ("exit" in question.lower() or "quit" in question.lower()):
            print("Ending the conversation.")
            return messages
        user_content = types.Content(
            role='user',
            parts=[types.Part.from_text(text=question)],
        )
        messages.append(user_content)
        
        # Start the conversation loop
        return self.run(messages)