import gradio as gr import pandas as pd import logging from typing import Dict, Any, List, Optional # Import the reconstruction function that now expects a cache dictionary from services.report_data_handler import fetch_and_reconstruct_data_from_bubble # UI formatting functions try: from ui.insights_ui_generator import ( format_report_for_display, extract_key_results_for_selection, format_single_okr_for_display ) AGENTIC_MODULES_LOADED = True except ImportError as e: logging.error(f"Could not import agentic pipeline display modules: {e}. Tabs 3 and 4 will be disabled.") AGENTIC_MODULES_LOADED = False def format_report_for_display(report_data): return "Agentic modules not loaded." def extract_key_results_for_selection(okrs_dict): return [] def format_single_okr_for_display(okr_data, **kwargs): return "Agentic modules not loaded." logger = logging.getLogger(__name__) def load_and_display_agentic_results(token_state: dict, session_cache: dict): """ Loads agentic results from state, populates the report library, and displays the LATEST report and its fully reconstructed OKRs by default, using a session-specific cache. Args: token_state: The main state dictionary with Bubble data. session_cache: The session-specific cache for reconstructed data. Returns: A tuple of Gradio updates, including the updated cache. """ initial_updates = ( "No agentic analysis data found in Bubble.", gr.update(choices=[], value=None, interactive=False), gr.update(choices=[], value=[], interactive=False), "No OKRs to display.", None, [], [], "Status: No agentic analysis data found.", session_cache # Return the cache unchanged ) if not AGENTIC_MODULES_LOADED: error_updates = list(initial_updates) error_updates[7] = "Status: Critical module import error." return tuple(error_updates) agentic_df = token_state.get("bubble_agentic_analysis_data") if agentic_df is None or agentic_df.empty: logger.warning("Agentic analysis DataFrame is missing or empty.") return initial_updates try: if 'Created Date' not in agentic_df.columns or '_id' not in agentic_df.columns: raise KeyError("Required columns ('Created Date', '_id') not found.") agentic_df['Created Date'] = pd.to_datetime(agentic_df['Created Date']) agentic_df = agentic_df.sort_values(by='Created Date', ascending=False).reset_index(drop=True) report_choices = [(f"{row.get('report_type', 'Report')} - {row['Created Date'].strftime('%Y-%m-%d %H:%M')}", row['_id']) for _, row in agentic_df.iterrows()] if not report_choices: return initial_updates quarterly_reports_df = agentic_df[agentic_df['report_type'] == 'Quarter'].copy() latest_report_series = quarterly_reports_df.iloc[0] latest_report_id = latest_report_series['_id'] report_display_md = format_report_for_display(latest_report_series) report_selector_update = gr.update(choices=report_choices, value=latest_report_id, interactive=True) # --- MODIFIED: Use the session cache for data reconstruction --- reconstructed_data, updated_cache = fetch_and_reconstruct_data_from_bubble(latest_report_series, session_cache) raw_results_state, okr_details_md = None, "No OKRs found in the latest report." key_results_cbg_update = gr.update(choices=[], value=[], interactive=False) all_krs_state = [] if reconstructed_data: raw_results_state = reconstructed_data actionable_okrs_dict = raw_results_state.get("actionable_okrs", {}) if actionable_okrs_dict: all_krs_state = extract_key_results_for_selection(actionable_okrs_dict) if all_krs_state: kr_choices = [(kr['kr_description'], kr['unique_kr_id']) for kr in all_krs_state] key_results_cbg_update = gr.update(choices=kr_choices, value=[], interactive=True) okrs_list = actionable_okrs_dict.get("okrs", []) output_md_parts = [format_single_okr_for_display(okr, okr_main_index=i) for i, okr in enumerate(okrs_list)] okr_details_md = "\n\n---\n\n".join(output_md_parts) if output_md_parts else okr_details_md else: logger.error(f"Failed to reconstruct data for latest report ID {latest_report_id}") okr_details_md = "Error: Could not reconstruct OKR data for this report." status_update = f"Status: Loaded {len(agentic_df)} reports. Displaying latest from {latest_report_series['Created Date'].strftime('%Y-%m-%d')}." return ( report_display_md, report_selector_update, key_results_cbg_update, okr_details_md, raw_results_state, [], all_krs_state, status_update, updated_cache # Return the potentially updated cache ) except Exception as e: logger.error(f"Failed to process and display agentic results: {e}", exc_info=True) error_updates = list(initial_updates) error_updates[0] = f"An error occurred while loading reports: {e}" error_updates[7] = f"Status: Error - {e}" return tuple(error_updates)