# ui/agentic_module.py import gradio as gr import logging from collections import defaultdict # --- Module Imports --- try: from run_agentic_pipeline import run_full_analytics_orchestration from ui.insights_ui_generator import ( format_report_to_markdown, extract_key_results_for_selection, format_single_okr_for_display ) AGENTIC_MODULES_LOADED = True except ImportError as e: logging.error(f"Could not import agentic pipeline modules in agentic_module.py: {e}.") AGENTIC_MODULES_LOADED = False async def run_full_analytics_orchestration(*args, **kwargs): return None def format_report_to_markdown(report_string): return "Agentic modules not loaded. Report unavailable." def extract_key_results_for_selection(okrs_dict): return [] def format_single_okr_for_display(okr_data, **kwargs): return "Agentic modules not loaded. OKR display unavailable." logger = logging.getLogger(__name__) # Store references to UI components that handlers need to update _agentic_report_display_md = None _key_results_cbg = None _okr_detail_display_md = None _agentic_pipeline_status_md = None def handle_update_okr_display(selected_kr_unique_ids: list, raw_orchestration_results: dict, all_krs_for_selection: list): if not raw_orchestration_results or not AGENTIC_MODULES_LOADED: return gr.update(value="Nessun dato dalla pipeline AI o moduli non caricati.") actionable_okrs_dict = raw_orchestration_results.get("actionable_okrs_and_tasks") if not actionable_okrs_dict or not isinstance(actionable_okrs_dict.get("okrs"), list): return gr.update(value="Nessun OKR trovato nei risultati della pipeline.") okrs_list = actionable_okrs_dict["okrs"] # Rebuild kr_id_to_indices based on the structure of all_krs_for_selection # all_krs_for_selection is: [{'okr_index': int, 'kr_index': int, 'unique_kr_id': str, ...}] kr_id_to_indices = {kr_info['unique_kr_id']: (kr_info['okr_index'], kr_info['kr_index']) for kr_info in all_krs_for_selection if isinstance(kr_info, dict) and 'unique_kr_id' in kr_info} selected_krs_by_okr_idx = defaultdict(list) if selected_kr_unique_ids: for kr_unique_id in selected_kr_unique_ids: if kr_unique_id in kr_id_to_indices: okr_idx, kr_idx = kr_id_to_indices[kr_unique_id] selected_krs_by_okr_idx[okr_idx].append(kr_idx) else: logger.warning(f"Selected KR ID '{kr_unique_id}' not found in kr_id_to_indices map.") output_md_parts = [] if not okrs_list: output_md_parts.append("Nessun OKR generato.") else: for okr_idx, okr_data in enumerate(okrs_list): accepted_indices_for_this_okr = selected_krs_by_okr_idx.get(okr_idx) # If specific KRs are selected, only show OKRs that have at least one of those selected KRs if selected_kr_unique_ids: # User has made a selection if accepted_indices_for_this_okr is not None: # This OKR has some selected KRs output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=accepted_indices_for_this_okr, okr_main_index=okr_idx)) else: # No KRs selected, show all OKRs with all their KRs output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=None, okr_main_index=okr_idx)) if not output_md_parts and selected_kr_unique_ids: final_md = "Nessun OKR corrisponde alla selezione corrente o i KR selezionati non hanno task dettagliati." elif not output_md_parts and not selected_kr_unique_ids and okrs_list : # OKRs exist but somehow didn't format final_md = "Nessun OKR da visualizzare in base alla selezione (o tutti OKR visualizzati)." elif not output_md_parts and not okrs_list: final_md = "Nessun OKR generato." else: final_md = "\n\n---\n\n".join(output_md_parts) return gr.update(value=final_md) async def handle_run_agentic_pipeline(current_token_state_val, orchestration_raw_results_st_val, key_results_for_selection_st_val, selected_key_result_ids_st_val): logger.info(f"Agentic pipeline check triggered. Current token: {'Set' if current_token_state_val.get('token') else 'Not Set'}") if not current_token_state_val or not current_token_state_val.get("token"): logger.info("Agentic pipeline: Token not available in token_state. Skipping.") yield ( gr.update(value="Pipeline AI: In attesa dei dati necessari..."), # report_display gr.update(choices=[], value=[], interactive=False), # key_results_cbg gr.update(value="Pipeline AI: In attesa dei dati necessari..."), # okr_detail_display None, # orchestration_raw_results_st [], # selected_key_result_ids_st [], # key_results_for_selection_st "Pipeline AI: In attesa dei dati..." # agentic_pipeline_status_md ) return logger.info("Agentic pipeline starting autonomously with 'Sempre' filter.") yield ( gr.update(value="Analisi AI (Sempre) in corso..."), gr.update(choices=[], value=[], interactive=False), gr.update(value="Dettagli OKR (Sempre) in corso di generazione..."), orchestration_raw_results_st_val, # Preserve existing results selected_key_result_ids_st_val, key_results_for_selection_st_val, "Esecuzione pipeline AI (Sempre)..." ) if not AGENTIC_MODULES_LOADED: logger.warning("Agentic modules not loaded. Skipping autonomous pipeline.") yield ( gr.update(value="Moduli AI non caricati. Report non disponibile."), gr.update(choices=[], value=[], interactive=False), gr.update(value="Moduli AI non caricati. OKR non disponibili."), None, [], [], "Pipeline AI: Moduli non caricati." ) return try: date_filter_val_agentic = "Sempre" custom_start_val_agentic = None custom_end_val_agentic = None orchestration_output = await run_full_analytics_orchestration( current_token_state_val, date_filter_val_agentic, custom_start_val_agentic, custom_end_val_agentic ) agentic_status_text = "Pipeline AI (Sempre) completata." logger.info(f"Autonomous agentic pipeline finished. Output keys: {orchestration_output.keys() if orchestration_output else 'None'}") if orchestration_output: orchestration_results_update = orchestration_output report_str = orchestration_output.get('comprehensive_analysis_report') agentic_report_md_update = gr.update(value=format_report_to_markdown(report_str)) actionable_okrs = orchestration_output.get('actionable_okrs_and_tasks') krs_for_ui_selection_list = extract_key_results_for_selection(actionable_okrs) krs_for_selection_update = krs_for_ui_selection_list # This is the list of dicts for the state kr_choices_for_cbg = [(kr['kr_description'], kr['unique_kr_id']) for kr in krs_for_ui_selection_list if isinstance(kr, dict)] key_results_cbg_update = gr.update(choices=kr_choices_for_cbg, value=[], interactive=True) # Default display for OKRs: show all, as if no KR is selected yet. all_okrs_md_parts = [] if actionable_okrs and isinstance(actionable_okrs.get("okrs"), list): for okr_idx, okr_item in enumerate(actionable_okrs["okrs"]): all_okrs_md_parts.append(format_single_okr_for_display(okr_item, accepted_kr_indices=None, okr_main_index=okr_idx)) if not all_okrs_md_parts: okr_detail_display_md_update = gr.update(value="Nessun OKR generato o trovato (Sempre).") else: okr_detail_display_md_update = gr.update(value="\n\n---\n\n".join(all_okrs_md_parts)) selected_krs_update = [] # Reset selection else: agentic_report_md_update = gr.update(value="Nessun report generato dalla pipeline AI (Sempre).") key_results_cbg_update = gr.update(choices=[], value=[], interactive=False) okr_detail_display_md_update = gr.update(value="Nessun OKR generato o errore nella pipeline AI (Sempre).") orchestration_results_update = None selected_krs_update = [] krs_for_selection_update = [] yield (agentic_report_md_update, key_results_cbg_update, okr_detail_display_md_update, orchestration_results_update, selected_krs_update, krs_for_selection_update, agentic_status_text) except Exception as e: logger.error(f"Error during autonomous agentic pipeline execution: {e}", exc_info=True) agentic_status_text = f"Errore pipeline AI (Sempre): {str(e)}" yield ( gr.update(value=f"Errore generazione report AI (Sempre): {str(e)}"), gr.update(choices=[], value=[], interactive=False), gr.update(value=f"Errore generazione OKR AI (Sempre): {str(e)}"), None, [], [], agentic_status_text ) def build_and_wire_tabs(orchestration_raw_results_st, key_results_for_selection_st, selected_key_result_ids_st): """Builds the UI for Agentic Tabs and wires up internal event handlers.""" global _agentic_report_display_md, _key_results_cbg, _okr_detail_display_md, _agentic_pipeline_status_md with gr.TabItem("3️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=AGENTIC_MODULES_LOADED): gr.Markdown("## 🤖 Comprehensive Analysis Report (AI Generated)") _agentic_pipeline_status_md = gr.Markdown("Stato Pipeline AI (filtro 'Sempre'): In attesa...", visible=True) gr.Markdown("Questo report è generato da un agente AI con filtro 'Sempre' sui dati disponibili. Rivedi criticamente.") _agentic_report_display_md = gr.Markdown("La pipeline AI si avvierà automaticamente dopo il caricamento iniziale dei dati o dopo una sincronizzazione.") if not AGENTIC_MODULES_LOADED: gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.") with gr.TabItem("4️⃣ Agentic OKRs & Tasks", id="tab_agentic_okrs", visible=AGENTIC_MODULES_LOADED): gr.Markdown("## 🎯 AI Generated OKRs and Actionable Tasks (filtro 'Sempre')") gr.Markdown("Basato sull'analisi AI (filtro 'Sempre'), l'agente ha proposto i seguenti OKR e task. Seleziona i Key Results per dettagli.") if not AGENTIC_MODULES_LOADED: gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.") with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Suggested Key Results (da analisi 'Sempre')") _key_results_cbg = gr.CheckboxGroup(label="Select Key Results", choices=[], value=[], interactive=True) with gr.Column(scale=3): gr.Markdown("### Detailed OKRs and Tasks for Selected Key Results") _okr_detail_display_md = gr.Markdown("I dettagli OKR appariranno qui dopo l'esecuzione della pipeline AI.") if AGENTIC_MODULES_LOADED: _key_results_cbg.change( fn=handle_update_okr_display, # This handler now correctly returns gr.update() inputs=[_key_results_cbg, orchestration_raw_results_st, key_results_for_selection_st], outputs=[_okr_detail_display_md] ) # Components to be updated by handle_run_agentic_pipeline # Order must match the yield tuple in handle_run_agentic_pipeline agentic_pipeline_outputs_components = [ _agentic_report_display_md, _key_results_cbg, _okr_detail_display_md, # orchestration_raw_results_st, # State # selected_key_result_ids_st, # State # key_results_for_selection_st, # State _agentic_pipeline_status_md ] return agentic_pipeline_outputs_components