# -*- coding: utf-8 -*- import gradio as gr import json import os import logging from Data_Fetching_and_Rendering import fetch_and_render_dashboard from analytics_fetch_and_rendering import fetch_and_render_analytics from mentions_dashboard import generate_mentions_dashboard from gradio_utils import get_url_user_token from Bubble_API_Calls import fetch_linkedin_token_from_bubble, bulk_upload_to_bubble from Linkedin_Data_API_Calls import ( fetch_linkedin_posts_core, fetch_comments, analyze_sentiment, compile_detailed_posts, prepare_data_for_bubble ) def check_token_status(token_state): return "✅ Token available" if token_state and token_state.get("token") else "❌ Token not available" def process_and_store_bubble_token(url_user_token, org_urn, token_state): new_state = token_state.copy() if token_state else {"token": None, "client_id": None, "org_urn": None} new_state.update({"token": None, "org_urn": org_urn}) client_id = os.environ.get("Linkedin_client_id") if not client_id: print("❌ CRITICAL ERROR: 'Linkedin_client_id' environment variable not set.") new_state["client_id"] = "ENV VAR MISSING" return check_token_status(new_state), new_state new_state["client_id"] = client_id if not url_user_token or "not found" in url_user_token or "Could not access" in url_user_token: return check_token_status(new_state), new_state print(f"Attempting to fetch token from Bubble with user token: {url_user_token}") parsed = fetch_linkedin_token_from_bubble(url_user_token) if isinstance(parsed, dict) and "access_token" in parsed: new_state["token"] = parsed print("✅ Token successfully fetched from Bubble.") else: print("❌ Failed to fetch a valid token from Bubble.") return check_token_status(new_state), new_state def guarded_fetch_posts(token_state): logging.info("Starting guarded_fetch_posts process.") if not token_state or not token_state.get("token"): logging.error("Access denied. No token available.") return "
❌ Access denied. No token available.
" client_id = token_state.get("client_id") token_dict = token_state.get("token") org_urn = token_state.get('org_urn') # Ensure 'org_urn' is correctly fetched from token_state if not org_urn: logging.error("Organization URN (org_urn) not found in token_state.") return "❌ Configuration error: Organization URN missing.
" if not client_id: logging.error("Client ID not found in token_state.") return "❌ Configuration error: Client ID missing.
" try: # Step 1: Fetch core post data (text, summary, category) and their basic stats logging.info(f"Step 1: Fetching core posts for org_urn: {org_urn}") processed_raw_posts, stats_map, _ = fetch_linkedin_posts_core(client_id, token_dict, org_urn) # org_name is returned as the third item, captured as _ if not used directly here if not processed_raw_posts: logging.info("No posts found to process after step 1.") return "ℹ️ No posts found to process.
" post_urns = [post["id"] for post in processed_raw_posts if post.get("id")] logging.info(f"Extracted {len(post_urns)} post URNs for further processing.") # Step 2: Fetch comments for these posts logging.info("Step 2: Fetching comments.") all_comments_data = fetch_comments(client_id, token_dict, post_urns, stats_map) # Step 3: Analyze sentiment of the comments logging.info("Step 3: Analyzing sentiment.") sentiments_per_post = analyze_sentiment(all_comments_data) # Step 4: Compile detailed post objects logging.info("Step 4: Compiling detailed posts.") detailed_posts = compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post) # Step 5: Prepare data for Bubble logging.info("Step 5: Preparing data for Bubble.") li_posts, li_post_stats, li_post_comments = prepare_data_for_bubble(detailed_posts, all_comments_data) # Step 6: Bulk upload to Bubble logging.info("Step 6: Uploading data to Bubble.") bulk_upload_to_bubble(li_posts, "LI_posts") bulk_upload_to_bubble(li_post_stats, "LI_post_stats") bulk_upload_to_bubble(li_post_comments, "LI_post_comments") logging.info("Successfully fetched and uploaded posts and comments to Bubble.") return "✅ Posts and comments uploaded to Bubble.
" except ValueError as ve: # Catch specific errors like "Failed to fetch posts" logging.error(f"ValueError during LinkedIn data processing: {ve}") return f"❌ Error: {html.escape(str(ve))}
" except Exception as e: logging.exception("An unexpected error occurred in guarded_fetch_posts.") # Logs full traceback return "❌ An unexpected error occurred. Please check logs.
" def guarded_fetch_dashboard(token_state): if not token_state or not token_state.get("token"): return "❌ Access denied. No token available.
" return fetch_and_render_dashboard(token_state.get("client_id"), token_state.get("token")) def guarded_fetch_analytics(token_state): if not token_state or not token_state.get("token"): return ("❌ Access denied. No token available.
", None, None, None, None, None, None, None) return fetch_and_render_analytics(token_state.get("client_id"), token_state.get("token")) def run_mentions_and_load(token_state): if not token_state or not token_state.get("token"): return ("❌ Access denied. No token available.
", None) return generate_mentions_dashboard(token_state.get("client_id"), token_state.get("token")) with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), title="LinkedIn Post Viewer & Analytics") as app: token_state = gr.State(value={"token": None, "client_id": None, "org_urn": None}) gr.Markdown("# 🚀 LinkedIn Organization Post Viewer & Analytics") gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.") url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False) status_box = gr.Textbox(label="Overall Token Status", interactive=False) org_urn = gr.Textbox(visible=False) # Needed for input, was missing from initial script app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn]) url_user_token_display.change( fn=process_and_store_bubble_token, inputs=[url_user_token_display, org_urn, token_state], outputs=[status_box, token_state] ) app.load(fn=check_token_status, inputs=[token_state], outputs=status_box) gr.Timer(5.0).tick(fn=check_token_status, inputs=[token_state], outputs=status_box) with gr.Tabs(): with gr.TabItem("1️⃣ Dashboard"): gr.Markdown("View your organization's recent posts and their engagement statistics.") sync_posts_to_bubble_btn = gr.Button("🔄 Fetch, Analyze & Store Posts to Bubble", variant="primary") dashboard_html_output = gr.HTML("Click the button to fetch posts and store them in Bubble. Status will appear here.
") # Corrected: The click handler now calls guarded_fetch_posts # and dashboard_html_output is correctly defined in this scope. sync_posts_to_bubble_btn.click( fn=guarded_fetch_posts, inputs=[token_state], outputs=[dashboard_html_output] ) with gr.TabItem("2️⃣ Analytics"): gr.Markdown("View follower count and monthly gains for your organization.") fetch_analytics_btn = gr.Button("📈 Fetch Follower Analytics", variant="primary") follower_count = gr.Markdown("Waiting for token...
") with gr.Row(): follower_plot, growth_plot = gr.Plot(), gr.Plot() with gr.Row(): eng_rate_plot = gr.Plot() with gr.Row(): interaction_plot = gr.Plot() with gr.Row(): eb_plot = gr.Plot() with gr.Row(): mentions_vol_plot, mentions_sentiment_plot = gr.Plot(), gr.Plot() fetch_analytics_btn.click( fn=guarded_fetch_analytics, inputs=[token_state], outputs=[follower_count, follower_plot, growth_plot, eng_rate_plot, interaction_plot, eb_plot, mentions_vol_plot, mentions_sentiment_plot] ) with gr.TabItem("3️⃣ Mentions"): gr.Markdown("Analyze sentiment of recent posts that mention your organization.") fetch_mentions_btn = gr.Button("🧠 Fetch Mentions & Sentiment", variant="primary") mentions_html = gr.HTML("Waiting for token...
") mentions_plot = gr.Plot() fetch_mentions_btn.click( fn=run_mentions_and_load, inputs=[token_state], outputs=[mentions_html, mentions_plot] ) if __name__ == "__main__": if not os.environ.get("Linkedin_client_id"): print("WARNING: The 'Linkedin_client_id' environment variable is not set. The application may not function correctly.") app.launch(server_name="0.0.0.0", server_port=7860, share=True)