Spaces:
Running
Running
Delete analytics_fetch_and_rendering.py
Browse files- analytics_fetch_and_rendering.py +0 -421
analytics_fetch_and_rendering.py
DELETED
@@ -1,421 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import requests
|
3 |
-
from datetime import datetime, timezone, timedelta
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
import gradio as gr
|
6 |
-
import traceback
|
7 |
-
import html
|
8 |
-
|
9 |
-
from sessions import create_session
|
10 |
-
from error_handling import display_error
|
11 |
-
|
12 |
-
from Data_Fetching_and_Rendering import fetch_posts_and_stats
|
13 |
-
from mentions_dashboard import generate_mentions_dashboard
|
14 |
-
|
15 |
-
import logging
|
16 |
-
|
17 |
-
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
18 |
-
|
19 |
-
API_V2_BASE = 'https://api.linkedin.com/v2'
|
20 |
-
API_REST_BASE = 'https://api.linkedin.com/rest'
|
21 |
-
|
22 |
-
def extract_follower_gains(data):
|
23 |
-
elements = data.get("elements", [])
|
24 |
-
if not elements:
|
25 |
-
return []
|
26 |
-
|
27 |
-
results = []
|
28 |
-
for item in elements:
|
29 |
-
start_timestamp = item.get("timeRange", {}).get("start")
|
30 |
-
if not start_timestamp:
|
31 |
-
continue
|
32 |
-
|
33 |
-
try:
|
34 |
-
date_str = datetime.fromtimestamp(start_timestamp / 1000, tz=timezone.utc).strftime('%Y-%m')
|
35 |
-
except Exception:
|
36 |
-
continue
|
37 |
-
|
38 |
-
gains = item.get("followerGains", {})
|
39 |
-
results.append({
|
40 |
-
"date": date_str,
|
41 |
-
"organic": gains.get("organicFollowerGain", 0) or 0,
|
42 |
-
"paid": gains.get("paidFollowerGain", 0) or 0
|
43 |
-
})
|
44 |
-
|
45 |
-
return sorted(results, key=lambda x: x['date'])
|
46 |
-
|
47 |
-
def fetch_analytics_data(client_id, token):
|
48 |
-
if not token:
|
49 |
-
raise ValueError("comm_token is missing.")
|
50 |
-
|
51 |
-
token_dict = token if isinstance(token, dict) else {'access_token': token, 'token_type': 'Bearer'}
|
52 |
-
session = create_session(client_id, token=token_dict)
|
53 |
-
|
54 |
-
try:
|
55 |
-
org_urn, org_name = "urn:li:organization:19010008", "GRLS"
|
56 |
-
|
57 |
-
count_url = f"{API_V2_BASE}/networkSizes/{org_urn}?edgeType=CompanyFollowedByMember"
|
58 |
-
follower_count = session.get(count_url).json().get("firstDegreeSize", 0)
|
59 |
-
|
60 |
-
start = datetime.now(timezone.utc) - timedelta(days=365)
|
61 |
-
start = start.replace(day=1, hour=0, minute=0, second=0, microsecond=0)
|
62 |
-
start_ms = int(start.timestamp() * 1000)
|
63 |
-
|
64 |
-
gains_url = (
|
65 |
-
f"{API_REST_BASE}/organizationalEntityFollowerStatistics"
|
66 |
-
f"?q=organizationalEntity&organizationalEntity={org_urn}"
|
67 |
-
f"&timeIntervals.timeGranularityType=MONTH"
|
68 |
-
f"&timeIntervals.timeRange.start={start_ms}"
|
69 |
-
)
|
70 |
-
gains_data = session.get(gains_url).json()
|
71 |
-
gains = extract_follower_gains(gains_data)
|
72 |
-
|
73 |
-
return org_name, follower_count, gains
|
74 |
-
|
75 |
-
except requests.exceptions.RequestException as e:
|
76 |
-
status = getattr(e.response, 'status_code', 'N/A')
|
77 |
-
msg = f"Failed to fetch LinkedIn analytics (Status: {status})."
|
78 |
-
raise ValueError(msg) from e
|
79 |
-
except Exception as e:
|
80 |
-
raise ValueError("Unexpected error during LinkedIn analytics fetch.") from e
|
81 |
-
|
82 |
-
def plot_follower_gains(data):
|
83 |
-
plt.style.use('seaborn-v0_8-whitegrid')
|
84 |
-
|
85 |
-
if not data:
|
86 |
-
fig, ax = plt.subplots(figsize=(10, 5))
|
87 |
-
ax.text(0.5, 0.5, 'No follower gains data.', ha='center', va='center', transform=ax.transAxes)
|
88 |
-
ax.set_title('Monthly Follower Gains')
|
89 |
-
ax.set_xticks([]); ax.set_yticks([])
|
90 |
-
return fig
|
91 |
-
|
92 |
-
dates = [d['date'] for d in data]
|
93 |
-
organic = [d['organic'] for d in data]
|
94 |
-
paid = [d['paid'] for d in data]
|
95 |
-
|
96 |
-
fig, ax = plt.subplots(figsize=(12, 6))
|
97 |
-
ax.plot(dates, organic, label='Organic', marker='o', color='#0073b1')
|
98 |
-
ax.plot(dates, paid, label='Paid', marker='x', linestyle='--', color='#d9534f')
|
99 |
-
ax.set(title='Monthly Follower Gains', xlabel='Month', ylabel='New Followers')
|
100 |
-
ax.tick_params(axis='x', rotation=45)
|
101 |
-
ax.legend()
|
102 |
-
plt.tight_layout()
|
103 |
-
return fig
|
104 |
-
|
105 |
-
def plot_growth_rate(data, total):
|
106 |
-
if not data:
|
107 |
-
fig, ax = plt.subplots(figsize=(10, 5))
|
108 |
-
ax.text(0.5, 0.5, 'No data for growth rate.', ha='center', va='center', transform=ax.transAxes)
|
109 |
-
ax.set_title('Growth Rate (%)')
|
110 |
-
ax.set_xticks([]); ax.set_yticks([])
|
111 |
-
return fig
|
112 |
-
|
113 |
-
dates = [d['date'] for d in data]
|
114 |
-
gains = [d['organic'] + d['paid'] for d in data]
|
115 |
-
|
116 |
-
history = []
|
117 |
-
current = total
|
118 |
-
for g in reversed(gains):
|
119 |
-
history.insert(0, current)
|
120 |
-
current -= g
|
121 |
-
|
122 |
-
rates = [((history[i] - history[i-1]) / history[i-1] * 100 if history[i-1] else 0) for i in range(1, len(history))]
|
123 |
-
|
124 |
-
fig, ax = plt.subplots(figsize=(12, 6))
|
125 |
-
ax.plot(dates[1:], rates, label='Growth Rate (%)', marker='o', color='green')
|
126 |
-
ax.set(title='Monthly Growth Rate (%)', xlabel='Month', ylabel='Growth %')
|
127 |
-
ax.tick_params(axis='x', rotation=45)
|
128 |
-
ax.legend()
|
129 |
-
plt.tight_layout()
|
130 |
-
return fig
|
131 |
-
|
132 |
-
def compute_monthly_avg_engagement_rate(posts):
|
133 |
-
from collections import defaultdict
|
134 |
-
import statistics
|
135 |
-
|
136 |
-
if not posts:
|
137 |
-
return []
|
138 |
-
|
139 |
-
monthly_data = defaultdict(lambda: {"engagement_sum": 0, "post_count": 0, "impression_total": 0})
|
140 |
-
|
141 |
-
for post in posts:
|
142 |
-
try:
|
143 |
-
month = post["when"][:7] # Format: YYYY-MM
|
144 |
-
likes = post.get("likes", 0)
|
145 |
-
comments = post.get("comments", 0)
|
146 |
-
shares = post.get("shares", 0)
|
147 |
-
clicks = post.get("clicks", 0)
|
148 |
-
impressions = post.get("impressions", 0)
|
149 |
-
|
150 |
-
engagement = likes + comments + shares + clicks
|
151 |
-
monthly_data[month]["engagement_sum"] += engagement
|
152 |
-
monthly_data[month]["post_count"] += 1
|
153 |
-
monthly_data[month]["impression_total"] += impressions
|
154 |
-
except Exception:
|
155 |
-
continue
|
156 |
-
|
157 |
-
results = []
|
158 |
-
for month in sorted(monthly_data.keys()):
|
159 |
-
data = monthly_data[month]
|
160 |
-
if data["post_count"] == 0 or data["impression_total"] == 0:
|
161 |
-
rate = 0
|
162 |
-
else:
|
163 |
-
avg_impressions = data["impression_total"] / data["post_count"]
|
164 |
-
rate = (data["engagement_sum"] / (data["post_count"] * avg_impressions)) * 100
|
165 |
-
results.append({"month": month, "engagement_rate": round(rate, 2)})
|
166 |
-
|
167 |
-
return results
|
168 |
-
|
169 |
-
def plot_avg_engagement_rate(data):
|
170 |
-
import matplotlib.pyplot as plt
|
171 |
-
|
172 |
-
if not data:
|
173 |
-
fig, ax = plt.subplots(figsize=(10, 5))
|
174 |
-
ax.text(0.5, 0.5, 'No engagement data.', ha='center', va='center', transform=ax.transAxes)
|
175 |
-
ax.set_title('Average Post Engagement Rate (%)')
|
176 |
-
ax.set_xticks([]); ax.set_yticks([])
|
177 |
-
return fig
|
178 |
-
|
179 |
-
months = [d["month"] for d in data]
|
180 |
-
rates = [d["engagement_rate"] for d in data]
|
181 |
-
|
182 |
-
fig, ax = plt.subplots(figsize=(12, 6))
|
183 |
-
ax.plot(months, rates, label="Engagement Rate (%)", marker="s", color="#ff7f0e")
|
184 |
-
ax.set(title="Average Post Engagement Rate (%)", xlabel="Month", ylabel="Engagement Rate %")
|
185 |
-
ax.tick_params(axis='x', rotation=45)
|
186 |
-
ax.legend()
|
187 |
-
plt.tight_layout()
|
188 |
-
return fig
|
189 |
-
|
190 |
-
def compute_post_interaction_metrics(posts):
|
191 |
-
from collections import defaultdict
|
192 |
-
|
193 |
-
if not posts:
|
194 |
-
return []
|
195 |
-
|
196 |
-
monthly_stats = defaultdict(lambda: {
|
197 |
-
"comments": 0,
|
198 |
-
"shares": 0,
|
199 |
-
"clicks": 0,
|
200 |
-
"likes": 0,
|
201 |
-
"posts": 0
|
202 |
-
})
|
203 |
-
|
204 |
-
for post in posts:
|
205 |
-
try:
|
206 |
-
month = post["when"][:7] # YYYY-MM
|
207 |
-
monthly_stats[month]["comments"] += post.get("comments", 0)
|
208 |
-
monthly_stats[month]["shares"] += post.get("shares", 0)
|
209 |
-
monthly_stats[month]["clicks"] += post.get("clicks", 0)
|
210 |
-
monthly_stats[month]["likes"] += post.get("likes", 0)
|
211 |
-
monthly_stats[month]["posts"] += 1
|
212 |
-
except Exception:
|
213 |
-
continue
|
214 |
-
|
215 |
-
results = []
|
216 |
-
for month in sorted(monthly_stats.keys()):
|
217 |
-
stats = monthly_stats[month]
|
218 |
-
total_engagement = stats["comments"] + stats["shares"] + stats["clicks"] + stats["likes"]
|
219 |
-
posts_count = stats["posts"] or 1 # Avoid division by zero
|
220 |
-
|
221 |
-
results.append({
|
222 |
-
"month": month,
|
223 |
-
"comments_per_post": round(stats["comments"] / posts_count, 2),
|
224 |
-
"shares_per_post": round(stats["shares"] / posts_count, 2),
|
225 |
-
"clicks_per_post": round(stats["clicks"] / posts_count, 2),
|
226 |
-
"comment_share_of_engagement": round((stats["comments"] / total_engagement) * 100 if total_engagement else 0, 2)
|
227 |
-
})
|
228 |
-
logging.info(f"this are the inter<ction results {results}")
|
229 |
-
return results
|
230 |
-
|
231 |
-
def plot_interaction_metrics(data):
|
232 |
-
if not data:
|
233 |
-
fig, ax = plt.subplots(figsize=(10, 5))
|
234 |
-
ax.text(0.5, 0.5, 'No interaction data.', ha='center', va='center', transform=ax.transAxes)
|
235 |
-
ax.set_title('Post Interaction Metrics')
|
236 |
-
ax.set_xticks([]); ax.set_yticks([])
|
237 |
-
return fig
|
238 |
-
|
239 |
-
months = [d["month"] for d in data]
|
240 |
-
comments_pp = [d["comments_per_post"] for d in data]
|
241 |
-
shares_pp = [d["shares_per_post"] for d in data]
|
242 |
-
clicks_pp = [d["clicks_per_post"] for d in data]
|
243 |
-
comment_share = [d["comment_share_of_engagement"] for d in data]
|
244 |
-
|
245 |
-
fig, axes = plt.subplots(nrows=4, ncols=1, figsize=(12, 10), sharex=True)
|
246 |
-
fig.suptitle("Post Interaction Metrics", fontsize=16)
|
247 |
-
|
248 |
-
axes[0].plot(months, comments_pp, marker="o", color="#1f77b4")
|
249 |
-
axes[0].set_ylabel("Comments/Post")
|
250 |
-
axes[0].grid(True)
|
251 |
-
|
252 |
-
axes[1].plot(months, shares_pp, marker="s", color="#ff7f0e")
|
253 |
-
axes[1].set_ylabel("Shares/Post")
|
254 |
-
axes[1].grid(True)
|
255 |
-
|
256 |
-
axes[2].plot(months, clicks_pp, marker="^", color="#2ca02c")
|
257 |
-
axes[2].set_ylabel("Clicks/Post")
|
258 |
-
axes[2].grid(True)
|
259 |
-
|
260 |
-
axes[3].plot(months, comment_share, marker="x", linestyle="--", color="#d62728")
|
261 |
-
axes[3].set_ylabel("Comment Share (%)")
|
262 |
-
axes[3].set_xlabel("Month")
|
263 |
-
axes[3].grid(True)
|
264 |
-
|
265 |
-
plt.xticks(rotation=45)
|
266 |
-
plt.tight_layout(rect=[0, 0, 1, 0.96]) # Leave space for suptitle
|
267 |
-
return fig
|
268 |
-
|
269 |
-
from collections import defaultdict
|
270 |
-
import matplotlib.pyplot as plt
|
271 |
-
|
272 |
-
def compute_eb_content_ratio(posts):
|
273 |
-
if not posts:
|
274 |
-
return []
|
275 |
-
|
276 |
-
monthly_counts = defaultdict(lambda: {"eb_count": 0, "total": 0})
|
277 |
-
|
278 |
-
for post in posts:
|
279 |
-
try:
|
280 |
-
month = post["when"][:7] # YYYY-MM
|
281 |
-
category = post.get("category", "None")
|
282 |
-
monthly_counts[month]["total"] += 1
|
283 |
-
if category and category.strip() != "None":
|
284 |
-
monthly_counts[month]["eb_count"] += 1
|
285 |
-
except Exception:
|
286 |
-
continue
|
287 |
-
|
288 |
-
results = []
|
289 |
-
for month in sorted(monthly_counts.keys()):
|
290 |
-
data = monthly_counts[month]
|
291 |
-
ratio = (data["eb_count"] / data["total"]) * 100 if data["total"] else 0
|
292 |
-
results.append({"month": month, "eb_ratio": round(ratio, 2)})
|
293 |
-
|
294 |
-
return results
|
295 |
-
|
296 |
-
def plot_eb_content_ratio(data):
|
297 |
-
if not data:
|
298 |
-
fig, ax = plt.subplots(figsize=(10, 5))
|
299 |
-
ax.text(0.5, 0.5, 'No EB content data.', ha='center', va='center', transform=ax.transAxes)
|
300 |
-
ax.set_title('EB Content Ratio (%)')
|
301 |
-
ax.set_xticks([]); ax.set_yticks([])
|
302 |
-
return fig
|
303 |
-
|
304 |
-
months = [d["month"] for d in data]
|
305 |
-
ratios = [d["eb_ratio"] for d in data]
|
306 |
-
|
307 |
-
fig, ax = plt.subplots(figsize=(12, 6))
|
308 |
-
ax.plot(months, ratios, label="EB Content Ratio (%)", marker="o", color="#2ca02c")
|
309 |
-
ax.set(title="Monthly EB Content Ratio (%)", xlabel="Month", ylabel="EB Content %")
|
310 |
-
ax.tick_params(axis='x', rotation=45)
|
311 |
-
ax.legend()
|
312 |
-
plt.tight_layout()
|
313 |
-
return fig
|
314 |
-
|
315 |
-
def compute_mention_metrics(mention_data):
|
316 |
-
if not mention_data:
|
317 |
-
return [], []
|
318 |
-
|
319 |
-
monthly_stats = defaultdict(lambda: {"positive": 0, "negative": 0, "neutral": 0, "total": 0})
|
320 |
-
|
321 |
-
for m in mention_data:
|
322 |
-
month = m["date"].strftime("%Y-%m")
|
323 |
-
sentiment = m["sentiment"]
|
324 |
-
monthly_stats[month]["total"] += 1
|
325 |
-
if "Positive" in sentiment:
|
326 |
-
monthly_stats[month]["positive"] += 1
|
327 |
-
elif "Negative" in sentiment:
|
328 |
-
monthly_stats[month]["negative"] += 1
|
329 |
-
elif "Neutral" in sentiment:
|
330 |
-
monthly_stats[month]["neutral"] += 1
|
331 |
-
|
332 |
-
volume_data = []
|
333 |
-
sentiment_data = []
|
334 |
-
sorted_months = sorted(monthly_stats.keys())
|
335 |
-
|
336 |
-
for i, month in enumerate(sorted_months):
|
337 |
-
stats = monthly_stats[month]
|
338 |
-
positive = stats["positive"]
|
339 |
-
negative = stats["negative"]
|
340 |
-
total = stats["total"]
|
341 |
-
|
342 |
-
sentiment_score = ((positive / total) * 100 - (negative / total) * 100) if total else 0
|
343 |
-
sentiment_ratio = (positive / negative) if negative else float('inf')
|
344 |
-
|
345 |
-
sentiment_data.append({
|
346 |
-
"month": month,
|
347 |
-
"score": round(sentiment_score, 2),
|
348 |
-
"ratio": round(sentiment_ratio, 2) if sentiment_ratio != float('inf') else None
|
349 |
-
})
|
350 |
-
|
351 |
-
prev_total = monthly_stats[sorted_months[i - 1]]["total"] if i > 0 else 0
|
352 |
-
change = (((total - prev_total) / prev_total) * 100) if prev_total else None
|
353 |
-
volume_data.append({"month": month, "count": total, "change": round(change, 2) if change is not None else None})
|
354 |
-
|
355 |
-
return volume_data, sentiment_data
|
356 |
-
|
357 |
-
def plot_mention_volume_trend(volume_data):
|
358 |
-
fig, ax = plt.subplots(figsize=(12, 6))
|
359 |
-
if not volume_data:
|
360 |
-
ax.text(0.5, 0.5, 'No Mention Volume Data.', ha='center', va='center', transform=ax.transAxes)
|
361 |
-
ax.set_title('Mention Volume Over Time')
|
362 |
-
return fig
|
363 |
-
|
364 |
-
months = [d["month"] for d in volume_data]
|
365 |
-
counts = [d["count"] for d in volume_data]
|
366 |
-
ax.plot(months, counts, marker='o', linestyle='-', color="#1f77b4")
|
367 |
-
ax.set(title="Monthly Mention Volume", xlabel="Month", ylabel="Mentions")
|
368 |
-
ax.tick_params(axis='x', rotation=45)
|
369 |
-
plt.tight_layout()
|
370 |
-
return fig
|
371 |
-
|
372 |
-
def plot_mention_sentiment_score(sentiment_data):
|
373 |
-
fig, ax = plt.subplots(figsize=(12, 6))
|
374 |
-
if not sentiment_data:
|
375 |
-
ax.text(0.5, 0.5, 'No Sentiment Score Data.', ha='center', va='center', transform=ax.transAxes)
|
376 |
-
ax.set_title('Mention Sentiment Score')
|
377 |
-
return fig
|
378 |
-
|
379 |
-
months = [d["month"] for d in sentiment_data]
|
380 |
-
scores = [d["score"] for d in sentiment_data]
|
381 |
-
ax.plot(months, scores, marker='o', linestyle='-', color="#ff7f0e")
|
382 |
-
ax.set(title="Monthly Sentiment Score (% Positive - % Negative)", xlabel="Month", ylabel="Score")
|
383 |
-
ax.axhline(0, color='gray', linestyle='--', linewidth=1)
|
384 |
-
ax.tick_params(axis='x', rotation=45)
|
385 |
-
plt.tight_layout()
|
386 |
-
return fig
|
387 |
-
|
388 |
-
|
389 |
-
def fetch_and_render_analytics(client_id, token):
|
390 |
-
loading = gr.update(value="<p>Loading follower count...</p>", visible=True)
|
391 |
-
hidden = gr.update(value=None, visible=False)
|
392 |
-
|
393 |
-
if not token:
|
394 |
-
error = "<p style='color:red;'>❌ Missing token. Please log in.</p>"
|
395 |
-
return gr.update(value=error, visible=True), hidden, hidden
|
396 |
-
|
397 |
-
try:
|
398 |
-
name, count, gains = fetch_analytics_data(client_id, token)
|
399 |
-
posts, org_name, sentiments = fetch_posts_and_stats(client_id, token, count=30)
|
400 |
-
engagement_data = compute_monthly_avg_engagement_rate(posts)
|
401 |
-
interaction_data = compute_post_interaction_metrics(posts)
|
402 |
-
eb_data = compute_eb_content_ratio(posts)
|
403 |
-
html_mentions, fig, mention_data = generate_mentions_dashboard(client_id, token)
|
404 |
-
volume_data, sentiment_data = compute_mention_metrics(mention_data)
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
count_html = f"""
|
410 |
-
<div style='text-align:center; padding:20px; background:#e7f3ff; border:1px solid #bce8f1; border-radius:8px;'>
|
411 |
-
<p style='font-size:1.1em; color:#31708f;'>Total Followers for</p>
|
412 |
-
<p style='font-size:1.4em; font-weight:bold; color:#005a9e;'>{html.escape(name)}</p>
|
413 |
-
<p style='font-size:2.8em; font-weight:bold; color:#0073b1;'>{count:,}</p>
|
414 |
-
<p style='font-size:0.9em; color:#777;'>(As of latest data)</p>
|
415 |
-
</div>
|
416 |
-
"""
|
417 |
-
return gr.update(value=count_html, visible=True), gr.update(value=plot_follower_gains(gains), visible=True), gr.update(value=plot_growth_rate(gains, count), visible=True), gr.update(value=plot_avg_engagement_rate(engagement_data), visible=True), gr.update(value=plot_interaction_metrics(interaction_data), visible=True), gr.update(value=plot_eb_content_ratio(eb_data), visible=True), gr.update(value=plot_mention_volume_trend(volume_data), visible=True), gr.update(value=plot_mention_sentiment_score(sentiment_data), visible=True)
|
418 |
-
|
419 |
-
except Exception as e:
|
420 |
-
error = display_error("Analytics load failed.", e).get('value', "<p style='color:red;'>Error loading data.</p>")
|
421 |
-
return gr.update(value=error, visible=True), hidden, hidden
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|