Spaces:
Running
Running
Update services/report_data_handler.py
Browse files- services/report_data_handler.py +63 -412
services/report_data_handler.py
CHANGED
@@ -1,446 +1,102 @@
|
|
1 |
# services/report_data_handler.py
|
|
|
|
|
|
|
|
|
|
|
2 |
import pandas as pd
|
3 |
import logging
|
4 |
-
from
|
|
|
|
|
|
|
5 |
from config import (
|
6 |
BUBBLE_REPORT_TABLE_NAME,
|
7 |
BUBBLE_OKR_TABLE_NAME,
|
8 |
BUBBLE_KEY_RESULTS_TABLE_NAME,
|
9 |
-
BUBBLE_TASKS_TABLE_NAME
|
10 |
-
BUBBLE_KR_UPDATE_TABLE_NAME,
|
11 |
)
|
12 |
-
import json # For handling JSON data
|
13 |
-
from typing import List, Dict, Any, Optional, Tuple
|
14 |
-
from datetime import date
|
15 |
|
16 |
-
# It's good practice to configure the logger at the application entry point,
|
17 |
-
# but setting a default handler here prevents "No handler found" warnings.
|
18 |
logging.basicConfig(level=logging.INFO)
|
19 |
logger = logging.getLogger(__name__)
|
20 |
|
21 |
def fetch_latest_agentic_analysis(org_urn: str) -> Tuple[Optional[pd.DataFrame], Optional[str]]:
|
22 |
"""
|
23 |
-
Fetches all agentic analysis data for a given org_urn from Bubble.
|
24 |
-
|
25 |
"""
|
26 |
-
logger.info(f"
|
27 |
-
|
28 |
-
today = date.today()
|
29 |
-
current_year = today.year
|
30 |
-
current_quarter = (today.month - 1) // 3 + 1
|
31 |
-
|
32 |
if not org_urn:
|
33 |
logger.warning("fetch_latest_agentic_analysis: org_urn is missing.")
|
34 |
return None, "org_urn is missing."
|
35 |
|
36 |
-
additional_constraint = [
|
37 |
-
{"key": 'quarter', "constraint_type": "equals", "value": current_quarter},
|
38 |
-
{"key": 'year', "constraint_type": "equals", "value": current_year}
|
39 |
-
]
|
40 |
try:
|
|
|
|
|
41 |
report_data_df, error = fetch_linkedin_posts_data_from_bubble(
|
42 |
data_type=BUBBLE_REPORT_TABLE_NAME,
|
43 |
constraint_value=org_urn,
|
44 |
constraint_key='organization_urn',
|
45 |
-
constraint_type
|
46 |
)
|
47 |
|
48 |
if error:
|
49 |
-
logger.error(f"Error fetching
|
50 |
return None, str(error)
|
51 |
|
52 |
if report_data_df is None or report_data_df.empty:
|
53 |
logger.info(f"No existing agentic analysis found in Bubble for org_urn {org_urn}.")
|
54 |
-
return None,
|
55 |
|
56 |
-
logger.info(f"Successfully fetched {len(report_data_df)} records for org_urn {org_urn}")
|
57 |
-
return report_data_df, None
|
58 |
|
59 |
except Exception as e:
|
60 |
logger.exception(f"An unexpected error occurred in fetch_latest_agentic_analysis for org_urn {org_urn}: {e}")
|
61 |
return None, str(e)
|
62 |
|
63 |
-
def _get_metrics_for_subject(data_subject: Optional[str], metrics: Dict[str, Any]) -> Optional[Dict[str, Any]]:
|
64 |
-
"""
|
65 |
-
Selects the appropriate metrics dictionary from the main metrics object
|
66 |
-
based on the key result's data_subject.
|
67 |
-
|
68 |
-
Args:
|
69 |
-
data_subject: The data subject string from the key result (e.g., 'follower_stats').
|
70 |
-
metrics: The dictionary containing all available metrics for the agents.
|
71 |
-
|
72 |
-
Returns:
|
73 |
-
The relevant metrics dictionary, or None if no match is found.
|
74 |
-
"""
|
75 |
-
if not data_subject or not metrics:
|
76 |
-
return None
|
77 |
-
|
78 |
-
# This mapping connects the data_subject string values to the keys in the `metrics` parameter.
|
79 |
-
METRICS_KEY_MAPPING = {
|
80 |
-
"follower_stats": "follower_agent",
|
81 |
-
"posts": "post_agent",
|
82 |
-
"mentions": "mentions_agent",
|
83 |
-
}
|
84 |
-
|
85 |
-
# Find the corresponding key for the metrics dictionary (e.g., 'follower_agent').
|
86 |
-
metrics_key = METRICS_KEY_MAPPING.get(data_subject)
|
87 |
-
|
88 |
-
if not metrics_key:
|
89 |
-
logger.debug(f"No metrics mapping found for data_subject: '{data_subject}'")
|
90 |
-
return None
|
91 |
-
|
92 |
-
# Retrieve and return the actual metrics data using the resolved key.
|
93 |
-
return metrics.get(metrics_key)
|
94 |
-
|
95 |
-
def save_report_results(
|
96 |
-
org_urn: str,
|
97 |
-
report_markdown: str,
|
98 |
-
quarter: int,
|
99 |
-
year: int,
|
100 |
-
report_type: str,
|
101 |
-
) -> Optional[str]:
|
102 |
-
"""Saves the agentic pipeline results to Bubble. Returns the new record ID or None."""
|
103 |
-
logger.info(f"Starting save_report_results for org_urn: {org_urn}")
|
104 |
-
if not org_urn:
|
105 |
-
logger.error("Cannot save agentic results: org_urn is missing.")
|
106 |
-
return None
|
107 |
-
|
108 |
-
try:
|
109 |
-
payload = {
|
110 |
-
"organization_urn": org_urn,
|
111 |
-
"report_text": report_markdown if report_markdown else "N/A",
|
112 |
-
"quarter": quarter,
|
113 |
-
"year": year,
|
114 |
-
"report_type": report_type,
|
115 |
-
}
|
116 |
-
logger.info(f"Attempting to save agentic analysis to Bubble for org_urn: {org_urn}")
|
117 |
-
response = bulk_upload_to_bubble([payload], BUBBLE_REPORT_TABLE_NAME)
|
118 |
-
|
119 |
-
# Handle API response which could be a list of dicts (for bulk) or a single dict.
|
120 |
-
if response and isinstance(response, list) and len(response) > 0 and isinstance(response[0], dict) and 'id' in response[0]:
|
121 |
-
record_id = response[0]['id'] # Get the ID from the first dictionary in the list
|
122 |
-
logger.info(f"Successfully saved agentic analysis to Bubble. Record ID: {record_id}")
|
123 |
-
return record_id
|
124 |
-
elif response and isinstance(response, dict) and "id" in response: # Handle non-bulk response
|
125 |
-
record_id = response["id"]
|
126 |
-
logger.info(f"Successfully saved agentic analysis to Bubble. Record ID: {record_id}")
|
127 |
-
return record_id
|
128 |
-
else:
|
129 |
-
# Catches None, False, empty lists, or other unexpected formats.
|
130 |
-
logger.error(f"Failed to save agentic analysis to Bubble. Unexpected API Response: {response}")
|
131 |
-
return None
|
132 |
-
|
133 |
-
except Exception as e:
|
134 |
-
logger.exception(f"An unexpected error occurred in save_report_results for org_urn {org_urn}: {e}")
|
135 |
-
return None
|
136 |
-
|
137 |
-
|
138 |
-
# --- Data Saving Functions ---
|
139 |
-
|
140 |
-
def save_objectives(
|
141 |
-
org_urn: str,
|
142 |
-
report_id: str,
|
143 |
-
objectives_data: List[Dict[str, Any]]
|
144 |
-
) -> Optional[List[str]]:
|
145 |
-
"""
|
146 |
-
Saves Objective records to Bubble.
|
147 |
-
Returns a list of the newly created Bubble record IDs for the objectives, or None on failure.
|
148 |
-
"""
|
149 |
-
logger.info(f"Starting save_objectives for report_id: {report_id}")
|
150 |
-
if not objectives_data:
|
151 |
-
logger.info("No objectives to save.")
|
152 |
-
return []
|
153 |
-
|
154 |
-
try:
|
155 |
-
payloads = []
|
156 |
-
for obj in objectives_data:
|
157 |
-
timeline = obj.get("objective_timeline")
|
158 |
-
payloads.append({
|
159 |
-
"description": obj.get("objective_description"),
|
160 |
-
# FIX: Convert Enum to its value before sending.
|
161 |
-
"timeline": timeline.value if hasattr(timeline, 'value') else timeline,
|
162 |
-
"owner": obj.get("objective_owner"),
|
163 |
-
"report": report_id,
|
164 |
-
})
|
165 |
-
|
166 |
-
logger.info(f"Attempting to save {payloads} objectives for report_id: {report_id}")
|
167 |
-
response_data = bulk_upload_to_bubble(payloads, BUBBLE_OKR_TABLE_NAME)
|
168 |
-
|
169 |
-
# Validate response and extract IDs from the list of dictionaries.
|
170 |
-
if not response_data or not isinstance(response_data, list):
|
171 |
-
logger.error(f"Failed to save objectives. API response was not a list: {response_data}")
|
172 |
-
return None
|
173 |
-
|
174 |
-
try:
|
175 |
-
# Extract the ID from each dictionary in the response list.
|
176 |
-
extracted_ids = [item['id'] for item in response_data]
|
177 |
-
except (TypeError, KeyError):
|
178 |
-
logger.error(f"Failed to parse IDs from API response. Response format invalid: {response_data}", exc_info=True)
|
179 |
-
return None
|
180 |
-
|
181 |
-
# Check if we extracted the expected number of IDs
|
182 |
-
if len(extracted_ids) != len(payloads):
|
183 |
-
logger.error(f"Failed to save all objectives for report_id: {report_id}. "
|
184 |
-
f"Expected {len(payloads)} IDs, but got {len(extracted_ids)} from response: {response_data}")
|
185 |
-
return None
|
186 |
-
|
187 |
-
logger.info(f"Successfully saved {len(extracted_ids)} objectives.")
|
188 |
-
return extracted_ids
|
189 |
-
|
190 |
-
except Exception as e:
|
191 |
-
logger.exception(f"An unexpected error occurred in save_objectives for report_id {report_id}: {e}")
|
192 |
-
return None
|
193 |
-
|
194 |
-
|
195 |
-
def save_key_results(
|
196 |
-
org_urn: str,
|
197 |
-
objectives_with_ids: List[Tuple[Dict[str, Any], str]],
|
198 |
-
metrics
|
199 |
-
) -> Optional[List[Tuple[Dict[str, Any], str]]]:
|
200 |
-
"""
|
201 |
-
Saves Key Result records to Bubble, linking them to their parent objectives.
|
202 |
-
Returns a list of tuples containing the original key result data and its new Bubble ID, or None on failure.
|
203 |
-
"""
|
204 |
-
logger.info(f"Starting save_key_results for {len(objectives_with_ids)} objectives.")
|
205 |
-
key_result_payloads = []
|
206 |
-
# This list preserves the original KR data in the correct order to match the returned IDs
|
207 |
-
key_results_to_process = []
|
208 |
-
|
209 |
-
if not objectives_with_ids:
|
210 |
-
logger.info("No objectives provided to save_key_results.")
|
211 |
-
return []
|
212 |
-
|
213 |
-
try:
|
214 |
-
for objective_data, parent_objective_id in objectives_with_ids:
|
215 |
-
# Defensive check to ensure the parent_objective_id is a valid-looking string.
|
216 |
-
if not isinstance(parent_objective_id, str) or not parent_objective_id:
|
217 |
-
logger.error(f"Invalid parent_objective_id found: '{parent_objective_id}'. Skipping KRs for this objective.")
|
218 |
-
continue # Skip this loop iteration
|
219 |
-
|
220 |
-
for kr in objective_data.get("key_results", []):
|
221 |
-
kr_type = kr.get("key_result_type")
|
222 |
-
key_results_to_process.append(kr)
|
223 |
-
data_subject_value = kr.get("data_subject")
|
224 |
-
|
225 |
-
metrics_for_kr = _get_metrics_for_subject(data_subject_value, metrics)
|
226 |
-
metrics_as_string = json.dumps(metrics_for_kr) if metrics_for_kr else None
|
227 |
-
|
228 |
-
key_result_payloads.append({
|
229 |
-
"okr": parent_objective_id,
|
230 |
-
"description": kr.get("key_result_description"),
|
231 |
-
"target_metric": kr.get("target_metric"),
|
232 |
-
"target_value": kr.get("target_value"),
|
233 |
-
# FIX: Convert Enum to its value before sending.
|
234 |
-
"kr_type": kr_type.value if hasattr(kr_type, 'value') else kr_type,
|
235 |
-
"data_subject": kr.get("data_subject"),
|
236 |
-
"metriche_data_subject": metrics_as_string
|
237 |
-
})
|
238 |
-
|
239 |
-
if not key_result_payloads:
|
240 |
-
logger.info("No key results to save.")
|
241 |
-
return []
|
242 |
-
|
243 |
-
logger.info(f"Attempting to save {key_result_payloads} key results for org_urn: {org_urn}")
|
244 |
-
response_data = bulk_upload_to_bubble(key_result_payloads, BUBBLE_KEY_RESULTS_TABLE_NAME)
|
245 |
-
|
246 |
-
# Validate response and extract IDs.
|
247 |
-
if not response_data or not isinstance(response_data, list):
|
248 |
-
logger.error(f"Failed to save key results. API response was not a list: {response_data}")
|
249 |
-
return None
|
250 |
-
|
251 |
-
try:
|
252 |
-
extracted_ids = [item['id'] for item in response_data]
|
253 |
-
except (TypeError, KeyError):
|
254 |
-
logger.error(f"Failed to parse IDs from key result API response: {response_data}", exc_info=True)
|
255 |
-
return None
|
256 |
-
|
257 |
-
if len(extracted_ids) != len(key_result_payloads):
|
258 |
-
logger.error(f"Failed to save all key results for org_urn: {org_urn}. "
|
259 |
-
f"Expected {len(key_result_payloads)} IDs, but got {len(extracted_ids)} from response: {response_data}")
|
260 |
-
return None
|
261 |
-
|
262 |
-
logger.info(f"Successfully saved {len(extracted_ids)} key results.")
|
263 |
-
return list(zip(key_results_to_process, extracted_ids))
|
264 |
-
|
265 |
-
except Exception as e:
|
266 |
-
logger.exception(f"An unexpected error occurred in save_key_results for org_urn {org_urn}: {e}")
|
267 |
-
return None
|
268 |
-
|
269 |
-
|
270 |
-
def save_tasks(
|
271 |
-
org_urn: str,
|
272 |
-
key_results_with_ids: List[Tuple[Dict[str, Any], str]]
|
273 |
-
) -> Optional[List[str]]:
|
274 |
-
"""
|
275 |
-
Saves Task records to Bubble, linking them to their parent key results.
|
276 |
-
Returns a list of the newly created Bubble record IDs for the tasks, or None on failure.
|
277 |
-
"""
|
278 |
-
logger.info(f"Starting save_tasks for {len(key_results_with_ids)} key results.")
|
279 |
-
if not key_results_with_ids:
|
280 |
-
logger.info("No key results provided to save_tasks.")
|
281 |
-
return []
|
282 |
-
|
283 |
-
try:
|
284 |
-
task_payloads = []
|
285 |
-
for key_result_data, parent_key_result_id in key_results_with_ids:
|
286 |
-
for task in key_result_data.get("tasks", []):
|
287 |
-
priority = task.get("priority")
|
288 |
-
effort = task.get("effort")
|
289 |
-
timeline = task.get("timeline")
|
290 |
-
task_payloads.append({
|
291 |
-
"key_result": parent_key_result_id,
|
292 |
-
"description": task.get("task_description"),
|
293 |
-
"deliverable": task.get("objective_deliverable"),
|
294 |
-
"category": task.get("task_category"),
|
295 |
-
# FIX: Convert Enum to its value before sending.
|
296 |
-
"priority": priority.value if hasattr(priority, 'value') else priority,
|
297 |
-
"priority_justification": task.get("priority_justification"),
|
298 |
-
"effort": effort.value if hasattr(effort, 'value') else effort,
|
299 |
-
"timeline": timeline.value if hasattr(timeline, 'value') else timeline,
|
300 |
-
"responsible_party": task.get("responsible_party"),
|
301 |
-
"success_criteria_metrics": task.get("success_criteria_metrics"),
|
302 |
-
"dependencies": task.get("dependencies_prerequisites"),
|
303 |
-
"why": task.get("why_proposed"),
|
304 |
-
})
|
305 |
-
|
306 |
-
|
307 |
-
if not task_payloads:
|
308 |
-
logger.info("No tasks to save.")
|
309 |
-
return []
|
310 |
-
|
311 |
-
logger.info(f"Attempting to save {task_payloads} tasks for org_urn: {org_urn}")
|
312 |
-
response_data = bulk_upload_to_bubble(task_payloads, BUBBLE_TASKS_TABLE_NAME)
|
313 |
-
|
314 |
-
# Validate response and extract IDs.
|
315 |
-
if not response_data or not isinstance(response_data, list):
|
316 |
-
logger.error(f"Failed to save tasks. API response was not a list: {response_data}")
|
317 |
-
return None
|
318 |
-
|
319 |
-
try:
|
320 |
-
extracted_ids = [item['id'] for item in response_data]
|
321 |
-
except (TypeError, KeyError):
|
322 |
-
logger.error(f"Failed to parse IDs from task API response: {response_data}", exc_info=True)
|
323 |
-
return None
|
324 |
-
|
325 |
-
if len(extracted_ids) != len(task_payloads):
|
326 |
-
logger.error(f"Failed to save all tasks for org_urn: {org_urn}. "
|
327 |
-
f"Expected {len(task_payloads)} IDs, but got {len(extracted_ids)} from response: {response_data}")
|
328 |
-
return None
|
329 |
-
|
330 |
-
logger.info(f"Successfully saved {len(extracted_ids)} tasks.")
|
331 |
-
return extracted_ids
|
332 |
-
|
333 |
-
except Exception as e:
|
334 |
-
logger.exception(f"An unexpected error occurred in save_tasks for org_urn {org_urn}: {e}")
|
335 |
-
return None
|
336 |
-
|
337 |
-
|
338 |
-
# --- Orchestrator Function ---
|
339 |
-
|
340 |
-
def save_actionable_okrs(org_urn: str, actionable_okrs: Dict[str, Any], report_id: str, metrics):
|
341 |
-
"""
|
342 |
-
Orchestrates the sequential saving of objectives, key results, and tasks.
|
343 |
-
"""
|
344 |
-
logger.info(f"--- Starting OKR save process for org_urn: {org_urn}, report_id: {report_id} ---")
|
345 |
-
|
346 |
-
try:
|
347 |
-
objectives_data = actionable_okrs.get("okrs", [])
|
348 |
-
|
349 |
-
# Defensive check: If data is a string, try to parse it as JSON.
|
350 |
-
if isinstance(objectives_data, str):
|
351 |
-
logger.warning("The 'okrs' data is a string. Attempting to parse as JSON.")
|
352 |
-
try:
|
353 |
-
objectives_data = json.loads(objectives_data)
|
354 |
-
logger.info("Successfully parsed 'okrs' data from JSON string.")
|
355 |
-
except json.JSONDecodeError:
|
356 |
-
logger.error("Failed to parse 'okrs' data. The string is not valid JSON.", exc_info=True)
|
357 |
-
return # Abort if data is malformed
|
358 |
-
|
359 |
-
if not objectives_data:
|
360 |
-
logger.warning(f"No OKRs found in the input for org_urn: {org_urn}. Aborting save process.")
|
361 |
-
return
|
362 |
-
|
363 |
-
# Step 1: Save the top-level objectives
|
364 |
-
objective_ids = save_objectives(org_urn, report_id, objectives_data)
|
365 |
-
if objective_ids is None:
|
366 |
-
logger.error("OKR save process aborted due to failure in saving objectives.")
|
367 |
-
return
|
368 |
-
|
369 |
-
# Combine the original objective data with their new IDs for the next step
|
370 |
-
objectives_with_ids = list(zip(objectives_data, objective_ids))
|
371 |
-
|
372 |
-
# Step 2: Save the key results, linking them to the objectives
|
373 |
-
key_results_with_ids = save_key_results(org_urn, objectives_with_ids, metrics)
|
374 |
-
if key_results_with_ids is None:
|
375 |
-
logger.error("OKR save process aborted due to failure in saving key results.")
|
376 |
-
return
|
377 |
-
|
378 |
-
# Step 3: Save the tasks, linking them to the key results
|
379 |
-
task_ids = save_tasks(org_urn, key_results_with_ids)
|
380 |
-
if task_ids is None:
|
381 |
-
logger.error("Task saving failed, but objectives and key results were saved.")
|
382 |
-
# For now, we just log the error and complete.
|
383 |
-
return
|
384 |
-
|
385 |
-
logger.info(f"--- OKR save process completed successfully for org_urn: {org_urn} ---")
|
386 |
-
|
387 |
-
except Exception as e:
|
388 |
-
logger.exception(f"An unhandled exception occurred during the save_actionable_okrs orchestration for org_urn {org_urn}: {e}")
|
389 |
-
|
390 |
|
391 |
def fetch_and_reconstruct_data_from_bubble(report_df: pd.DataFrame) -> Optional[Dict[str, Any]]:
|
392 |
"""
|
393 |
-
|
394 |
-
and reconstructs
|
395 |
|
396 |
Args:
|
397 |
-
|
398 |
|
399 |
Returns:
|
400 |
-
A dictionary containing the reconstructed data ('report_str', 'actionable_okrs',
|
401 |
-
or None if the report is not found or
|
402 |
"""
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
# report_df, error = fetch_linkedin_posts_data_from_bubble(
|
408 |
-
# data_type=BUBBLE_REPORT_TABLE_NAME,
|
409 |
-
# org_urn=org_urn,
|
410 |
-
# constraint_key="organization_urn"
|
411 |
-
# )
|
412 |
-
|
413 |
-
# if error or report_df is None or report_df.empty:
|
414 |
-
# logger.error(f"Could not fetch latest report for org_urn {org_urn}. Error: {error}")
|
415 |
-
# return None
|
416 |
|
417 |
-
logger.info(f"Starting data fetch and reconstruction")
|
418 |
try:
|
419 |
-
#
|
420 |
-
|
|
|
421 |
report_id = latest_report.get('_id')
|
422 |
if not report_id:
|
423 |
-
logger.error("Fetched report is missing a Bubble '_id'.")
|
424 |
return None
|
425 |
-
|
426 |
-
logger.info(f"Fetched latest report with ID: {report_id}")
|
427 |
|
428 |
-
|
|
|
|
|
429 |
okrs_df, error = fetch_linkedin_posts_data_from_bubble(
|
430 |
data_type=BUBBLE_OKR_TABLE_NAME,
|
431 |
-
constraint_value=
|
432 |
constraint_key='report',
|
433 |
-
constraint_type
|
434 |
)
|
435 |
if error:
|
436 |
logger.error(f"Error fetching OKRs for report_id {report_id}: {error}")
|
437 |
-
|
438 |
|
439 |
-
|
440 |
-
logger.info(f" okr_df {okrs_df}")
|
441 |
-
# 3. Fetch all related Key Results using the OKR IDs
|
442 |
okr_ids = okrs_df['_id'].tolist() if not okrs_df.empty else []
|
443 |
-
logger.info(f" retrieved {len(okr_ids)} okr ID: {okr_ids}")
|
444 |
krs_df = pd.DataFrame()
|
445 |
if okr_ids:
|
446 |
krs_df, error = fetch_linkedin_posts_data_from_bubble(
|
@@ -449,11 +105,9 @@ def fetch_and_reconstruct_data_from_bubble(report_df: pd.DataFrame) -> Optional[
|
|
449 |
constraint_key='okr',
|
450 |
constraint_type='in'
|
451 |
)
|
452 |
-
if error:
|
453 |
-
logger.error(f"Error fetching Key Results for OKR IDs {okr_ids}: {error}")
|
454 |
-
krs_df = pd.DataFrame()
|
455 |
|
456 |
-
#
|
457 |
kr_ids = krs_df['_id'].tolist() if not krs_df.empty else []
|
458 |
tasks_df = pd.DataFrame()
|
459 |
if kr_ids:
|
@@ -463,38 +117,35 @@ def fetch_and_reconstruct_data_from_bubble(report_df: pd.DataFrame) -> Optional[
|
|
463 |
constraint_key='key_result',
|
464 |
constraint_type='in'
|
465 |
)
|
466 |
-
if error:
|
467 |
-
logger.error(f"Error fetching Tasks for KR IDs {kr_ids}: {error}")
|
468 |
-
tasks_df = pd.DataFrame()
|
469 |
|
470 |
-
#
|
471 |
-
tasks_by_kr_id = tasks_df.groupby('key_result').apply(lambda x: x.to_dict('records')).to_dict()
|
472 |
-
krs_by_okr_id = krs_df.groupby('okr').apply(lambda x: x.to_dict('records')).to_dict()
|
473 |
|
474 |
reconstructed_okrs = []
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
reconstructed_okrs.append(okr_data)
|
487 |
-
|
488 |
actionable_okrs = {"okrs": reconstructed_okrs}
|
489 |
-
|
490 |
-
|
491 |
-
"report_str": latest_report.get("report_text", "Nessun report trovato."),
|
492 |
"quarter": latest_report.get("quarter"),
|
493 |
"year": latest_report.get("year"),
|
494 |
"actionable_okrs": actionable_okrs,
|
495 |
"report_id": report_id
|
496 |
}
|
|
|
|
|
497 |
|
498 |
except Exception as e:
|
499 |
-
logger.exception(f"An unexpected error occurred during data reconstruction
|
500 |
-
return None
|
|
|
1 |
# services/report_data_handler.py
|
2 |
+
"""
|
3 |
+
This module is responsible for fetching pre-computed agentic analysis data
|
4 |
+
(reports, OKRs, etc.) from Bubble.io and reconstructing it into a nested
|
5 |
+
dictionary format that the Gradio UI can easily display.
|
6 |
+
"""
|
7 |
import pandas as pd
|
8 |
import logging
|
9 |
+
from typing import Dict, Any, Optional, Tuple
|
10 |
+
|
11 |
+
# This is the only function needed from the Bubble API module for this handler
|
12 |
+
from apis.Bubble_API_Calls import fetch_linkedin_posts_data_from_bubble
|
13 |
from config import (
|
14 |
BUBBLE_REPORT_TABLE_NAME,
|
15 |
BUBBLE_OKR_TABLE_NAME,
|
16 |
BUBBLE_KEY_RESULTS_TABLE_NAME,
|
17 |
+
BUBBLE_TASKS_TABLE_NAME
|
|
|
18 |
)
|
|
|
|
|
|
|
19 |
|
|
|
|
|
20 |
logging.basicConfig(level=logging.INFO)
|
21 |
logger = logging.getLogger(__name__)
|
22 |
|
23 |
def fetch_latest_agentic_analysis(org_urn: str) -> Tuple[Optional[pd.DataFrame], Optional[str]]:
|
24 |
"""
|
25 |
+
Fetches all agentic analysis report data for a given org_urn from Bubble.
|
26 |
+
This function is called once during the initial data load.
|
27 |
"""
|
28 |
+
logger.info(f"Fetching latest agentic analysis data from Bubble for org_urn: {org_urn}")
|
|
|
|
|
|
|
|
|
|
|
29 |
if not org_urn:
|
30 |
logger.warning("fetch_latest_agentic_analysis: org_urn is missing.")
|
31 |
return None, "org_urn is missing."
|
32 |
|
|
|
|
|
|
|
|
|
33 |
try:
|
34 |
+
# We fetch all reports and will sort them later if needed, but typically the
|
35 |
+
# external process should manage providing the "latest" or "active" report.
|
36 |
report_data_df, error = fetch_linkedin_posts_data_from_bubble(
|
37 |
data_type=BUBBLE_REPORT_TABLE_NAME,
|
38 |
constraint_value=org_urn,
|
39 |
constraint_key='organization_urn',
|
40 |
+
constraint_type='equals'
|
41 |
)
|
42 |
|
43 |
if error:
|
44 |
+
logger.error(f"Error fetching agentic reports from Bubble for org_urn {org_urn}: {error}")
|
45 |
return None, str(error)
|
46 |
|
47 |
if report_data_df is None or report_data_df.empty:
|
48 |
logger.info(f"No existing agentic analysis found in Bubble for org_urn {org_urn}.")
|
49 |
+
return pd.DataFrame(), None # Return empty DataFrame, no error
|
50 |
|
51 |
+
logger.info(f"Successfully fetched {len(report_data_df)} agentic report records for org_urn {org_urn}")
|
52 |
+
return report_data_df, None
|
53 |
|
54 |
except Exception as e:
|
55 |
logger.exception(f"An unexpected error occurred in fetch_latest_agentic_analysis for org_urn {org_urn}: {e}")
|
56 |
return None, str(e)
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
def fetch_and_reconstruct_data_from_bubble(report_df: pd.DataFrame) -> Optional[Dict[str, Any]]:
|
60 |
"""
|
61 |
+
Takes a DataFrame of report data, fetches all related child items (OKRs, KRs, Tasks)
|
62 |
+
from Bubble, and reconstructs the full nested dictionary expected by the UI.
|
63 |
|
64 |
Args:
|
65 |
+
report_df: The DataFrame containing one or more reports, fetched previously.
|
66 |
|
67 |
Returns:
|
68 |
+
A dictionary containing the reconstructed data ('report_str', 'actionable_okrs'),
|
69 |
+
or None if the report is not found or a critical error occurs.
|
70 |
"""
|
71 |
+
logger.info("Starting data reconstruction from fetched Bubble data.")
|
72 |
+
if report_df is None or report_df.empty:
|
73 |
+
logger.warning("Cannot reconstruct data, the provided report DataFrame is empty.")
|
74 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
|
|
76 |
try:
|
77 |
+
# Assuming the most recent report is desired if multiple are returned.
|
78 |
+
# You might need more sophisticated logic here to select the "active" report.
|
79 |
+
latest_report = report_df.sort_values(by='Created Date', ascending=False).iloc[0]
|
80 |
report_id = latest_report.get('_id')
|
81 |
if not report_id:
|
82 |
+
logger.error("Fetched report is missing a Bubble '_id', cannot reconstruct children.")
|
83 |
return None
|
|
|
|
|
84 |
|
85 |
+
logger.info(f"Reconstructing data for the latest report, ID: {report_id}")
|
86 |
+
|
87 |
+
# 1. Fetch all related OKRs using the report_id
|
88 |
okrs_df, error = fetch_linkedin_posts_data_from_bubble(
|
89 |
data_type=BUBBLE_OKR_TABLE_NAME,
|
90 |
+
constraint_value=report_id,
|
91 |
constraint_key='report',
|
92 |
+
constraint_type='equals'
|
93 |
)
|
94 |
if error:
|
95 |
logger.error(f"Error fetching OKRs for report_id {report_id}: {error}")
|
96 |
+
return None # Fail reconstruction if children can't be fetched
|
97 |
|
98 |
+
# 2. Fetch all related Key Results using the OKR IDs
|
|
|
|
|
99 |
okr_ids = okrs_df['_id'].tolist() if not okrs_df.empty else []
|
|
|
100 |
krs_df = pd.DataFrame()
|
101 |
if okr_ids:
|
102 |
krs_df, error = fetch_linkedin_posts_data_from_bubble(
|
|
|
105 |
constraint_key='okr',
|
106 |
constraint_type='in'
|
107 |
)
|
108 |
+
if error: logger.error(f"Error fetching Key Results: {error}")
|
|
|
|
|
109 |
|
110 |
+
# 3. Fetch all related Tasks using the Key Result IDs
|
111 |
kr_ids = krs_df['_id'].tolist() if not krs_df.empty else []
|
112 |
tasks_df = pd.DataFrame()
|
113 |
if kr_ids:
|
|
|
117 |
constraint_key='key_result',
|
118 |
constraint_type='in'
|
119 |
)
|
120 |
+
if error: logger.error(f"Error fetching Tasks: {error}")
|
|
|
|
|
121 |
|
122 |
+
# 4. Reconstruct the nested dictionary
|
123 |
+
tasks_by_kr_id = tasks_df.groupby('key_result').apply(lambda x: x.to_dict('records')).to_dict() if not tasks_df.empty else {}
|
124 |
+
krs_by_okr_id = krs_df.groupby('okr').apply(lambda x: x.to_dict('records')).to_dict() if not krs_df.empty else {}
|
125 |
|
126 |
reconstructed_okrs = []
|
127 |
+
if not okrs_df.empty:
|
128 |
+
for okr_data in okrs_df.to_dict('records'):
|
129 |
+
okr_id = okr_data['_id']
|
130 |
+
key_results_list = krs_by_okr_id.get(okr_id, [])
|
131 |
+
for kr_data in key_results_list:
|
132 |
+
kr_id = kr_data['_id']
|
133 |
+
kr_data['tasks'] = tasks_by_kr_id.get(kr_id, [])
|
134 |
+
okr_data['key_results'] = key_results_list
|
135 |
+
reconstructed_okrs.append(okr_data)
|
136 |
+
|
137 |
+
# 5. Assemble the final payload for the UI
|
|
|
|
|
138 |
actionable_okrs = {"okrs": reconstructed_okrs}
|
139 |
+
final_reconstructed_data = {
|
140 |
+
"report_str": latest_report.get("report_text", "Report text not found."),
|
|
|
141 |
"quarter": latest_report.get("quarter"),
|
142 |
"year": latest_report.get("year"),
|
143 |
"actionable_okrs": actionable_okrs,
|
144 |
"report_id": report_id
|
145 |
}
|
146 |
+
logger.info("Successfully reconstructed nested data structure for the UI.")
|
147 |
+
return final_reconstructed_data
|
148 |
|
149 |
except Exception as e:
|
150 |
+
logger.exception(f"An unexpected error occurred during data reconstruction: {e}")
|
151 |
+
return None
|