GuglielmoTor commited on
Commit
afab0ca
·
verified ·
1 Parent(s): e4cf8e8

Update features/insight_and_tasks/orchestrators/linkedin_analytics_orchestrator.py

Browse files
features/insight_and_tasks/orchestrators/linkedin_analytics_orchestrator.py CHANGED
@@ -1,9 +1,9 @@
1
  # orchestrators/linkedin_analytics_orchestrator.py
2
  import pandas as pd
3
  import logging
4
- from typing import Dict, Any, Optional, AsyncGenerator
5
- from datetime import date, datetime
6
- from dataclasses import asdict
7
  import os
8
 
9
  os.environ["GOOGLE_GENAI_USE_VERTEXAI"] = "False"
@@ -11,115 +11,286 @@ GOOGLE_API_KEY = os.environ.get("GEMINI_API_KEY")
11
  os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
12
 
13
  # Project-specific imports
14
- from features.insight_and_tasks.utils.pandasai_setup import configure_pandasai
15
  from features.insight_and_tasks.coordinators.employer_branding_coordinator import EnhancedEmployerBrandingCoordinator
16
  from features.insight_and_tasks.agents.task_extraction_agent import TaskExtractionAgent
17
- from features.insight_and_tasks.data_models.metrics import AgentMetrics
18
- from features.insight_and_tasks.data_models.tasks import TaskExtractionOutput
19
  from features.insight_and_tasks.agents.task_extraction_model import extract_tasks_from_text
20
 
 
21
  logger = logging.getLogger(__name__)
22
 
23
  class EnhancedLinkedInAnalyticsOrchestrator:
24
  """
25
- Orchestrates the end-to-end LinkedIn analytics process with streaming results.
 
26
  """
27
 
28
  def __init__(self, api_key: str, llm_model_name: Optional[str] = None, current_date_for_tasks: Optional[date] = None):
 
 
 
 
 
 
 
 
29
  self.api_key = api_key
30
- self.llm_model_name = llm_model_name
31
 
 
 
32
  try:
33
  configure_pandasai(api_key=self.api_key, model_name=self.llm_model_name)
34
  logger.info(f"PandasAI configured by orchestrator with model hint: {self.llm_model_name or 'default'}.")
35
  except Exception as e:
36
  logger.error(f"Failed to configure PandasAI in orchestrator: {e}", exc_info=True)
 
37
 
 
 
38
  self.coordinator = EnhancedEmployerBrandingCoordinator(api_key=self.api_key, model_name=self.llm_model_name)
 
 
 
39
  self.task_extractor = TaskExtractionAgent(
40
  api_key=self.api_key,
41
- model_name=self.llm_model_name,
42
- current_date=current_date_for_tasks
43
  )
44
  logger.info("EnhancedLinkedInAnalyticsOrchestrator initialized.")
45
 
46
- async def generate_full_analysis_and_tasks_streaming(
47
  self,
48
  follower_stats_df: pd.DataFrame,
49
  post_df: pd.DataFrame,
50
  mentions_df: pd.DataFrame
51
- ) -> AsyncGenerator[Dict[str, Any], None]:
52
  """
53
- Executes the full pipeline with streaming results.
54
- Yields intermediate results as they become available.
 
 
 
 
 
 
55
  """
56
- logger.info("Starting streaming analysis and task generation pipeline...")
57
 
58
- # Step 1: Get analyses and metrics from specialized agents
 
59
  logger.info("Running follower analysis...")
60
  follower_agent_metrics: AgentMetrics = self.coordinator.follower_agent.analyze_follower_data(follower_stats_df)
61
- logger.info(f"Follower analysis complete.")
62
 
63
  logger.info("Running post performance analysis...")
64
  post_agent_metrics: AgentMetrics = self.coordinator.post_agent.analyze_post_data(post_df)
65
- logger.info(f"Post analysis complete.")
66
 
67
  logger.info("Running mentions analysis...")
68
  mentions_agent_metrics: AgentMetrics = self.coordinator.mentions_agent.analyze_mentions_data(mentions_df)
69
- logger.info(f"Mentions analysis complete.")
70
 
71
- # Step 2: Coordinator synthesizes these metrics into a comprehensive analysis text
72
  logger.info("Running coordinator for synthesis...")
73
  comprehensive_analysis_text: str = await self.coordinator.generate_comprehensive_analysis(
74
  follower_agent_metrics, post_agent_metrics, mentions_agent_metrics
75
  )
76
  logger.info(f"Coordinator synthesis complete. Report length: {len(comprehensive_analysis_text)} chars.")
 
 
 
77
 
78
- # Yield the report as soon as it's ready
79
- partial_results = {
80
- "comprehensive_analysis_report": comprehensive_analysis_text,
81
- "actionable_okrs_and_tasks": None, # Not ready yet
82
- "detailed_metrics": {
83
- "follower_agent": asdict(follower_agent_metrics) if follower_agent_metrics else None,
84
- "post_agent": asdict(post_agent_metrics) if post_agent_metrics else None,
85
- "mentions_agent": asdict(mentions_agent_metrics) if mentions_agent_metrics else None,
86
- },
87
- "status": "report_ready" # Indicate what's available
88
- }
89
- logger.info("Yielding report results...")
90
- yield partial_results
91
-
92
- # Step 3: TaskExtractionAgent extracts actionable tasks (OKRs) from the comprehensive text
93
  logger.info("Running task extraction...")
 
94
  actionable_tasks_okrs: TaskExtractionOutput = extract_tasks_from_text(comprehensive_analysis_text, GOOGLE_API_KEY)
95
  logger.info(f"Task extraction complete. Number of OKRs: {len(actionable_tasks_okrs.okrs) if actionable_tasks_okrs else 'Error'}.")
96
 
97
- # Yield the final complete results
 
 
 
 
98
  final_results = {
99
  "comprehensive_analysis_report": comprehensive_analysis_text,
100
- "actionable_okrs_and_tasks": actionable_tasks_okrs.model_dump() if actionable_tasks_okrs else None,
 
101
  "detailed_metrics": {
102
  "follower_agent": asdict(follower_agent_metrics) if follower_agent_metrics else None,
103
  "post_agent": asdict(post_agent_metrics) if post_agent_metrics else None,
104
  "mentions_agent": asdict(mentions_agent_metrics) if mentions_agent_metrics else None,
105
- },
106
- "status": "complete" # Indicate everything is ready
107
  }
108
- logger.info("Yielding final complete results...")
109
- yield final_results
110
 
111
- # Keep the original method for backward compatibility
112
- async def generate_full_analysis_and_tasks(
113
- self,
114
- follower_stats_df: pd.DataFrame,
115
- post_df: pd.DataFrame,
116
- mentions_df: pd.DataFrame
117
- ) -> Dict[str, Any]:
118
- """
119
- Original method - returns complete results only when everything is done.
120
- """
121
- async for result in self.generate_full_analysis_and_tasks_streaming(follower_stats_df, post_df, mentions_df):
122
- if result.get("status") == "complete":
123
- return result
124
- # Fallback if no complete result
125
- return {"error": "Pipeline did not complete successfully"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # orchestrators/linkedin_analytics_orchestrator.py
2
  import pandas as pd
3
  import logging
4
+ from typing import Dict, Any, Optional
5
+ from datetime import date, datetime # For TaskExtractionAgent date
6
+ from dataclasses import asdict # For converting AgentMetrics to dict if needed for final output
7
  import os
8
 
9
  os.environ["GOOGLE_GENAI_USE_VERTEXAI"] = "False"
 
11
  os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
12
 
13
  # Project-specific imports
14
+ from features.insight_and_tasks.utils.pandasai_setup import configure_pandasai # Centralized PandasAI config
15
  from features.insight_and_tasks.coordinators.employer_branding_coordinator import EnhancedEmployerBrandingCoordinator
16
  from features.insight_and_tasks.agents.task_extraction_agent import TaskExtractionAgent
17
+ from features.insight_and_tasks.data_models.metrics import AgentMetrics # For type hinting
18
+ from features.insight_and_tasks.data_models.tasks import TaskExtractionOutput # For type hinting
19
  from features.insight_and_tasks.agents.task_extraction_model import extract_tasks_from_text
20
 
21
+ # Configure logger for this module
22
  logger = logging.getLogger(__name__)
23
 
24
  class EnhancedLinkedInAnalyticsOrchestrator:
25
  """
26
+ Orchestrates the end-to-end LinkedIn analytics process, from data input through
27
+ specialized agent analysis, coordinator synthesis, and actionable task extraction.
28
  """
29
 
30
  def __init__(self, api_key: str, llm_model_name: Optional[str] = None, current_date_for_tasks: Optional[date] = None):
31
+ """
32
+ Initializes the orchestrator.
33
+ Args:
34
+ api_key: The API key for Google services (used by PandasAI and LlmAgents).
35
+ llm_model_name: Optional. The primary LLM model name to be used by agents.
36
+ Specific agents/coordinator might override with their defaults if not set.
37
+ current_date_for_tasks: Optional. The date to be used by TaskExtractionAgent for quarter calculations. Defaults to today.
38
+ """
39
  self.api_key = api_key
40
+ self.llm_model_name = llm_model_name # Can be passed down or agents use their defaults
41
 
42
+ # Configure PandasAI globally at the start of orchestration.
43
+ # Pass the model_name if specified, otherwise pandasai_setup might use its own default.
44
  try:
45
  configure_pandasai(api_key=self.api_key, model_name=self.llm_model_name)
46
  logger.info(f"PandasAI configured by orchestrator with model hint: {self.llm_model_name or 'default'}.")
47
  except Exception as e:
48
  logger.error(f"Failed to configure PandasAI in orchestrator: {e}", exc_info=True)
49
+ # Decide if this is a critical failure or if agents can proceed (they might try to reconfigure)
50
 
51
+ # Initialize the coordinator, which in turn initializes its specialized agents.
52
+ # Pass the model_name hint to the coordinator.
53
  self.coordinator = EnhancedEmployerBrandingCoordinator(api_key=self.api_key, model_name=self.llm_model_name)
54
+
55
+ # Initialize the TaskExtractionAgent.
56
+ # It uses its own default model unless overridden here.
57
  self.task_extractor = TaskExtractionAgent(
58
  api_key=self.api_key,
59
+ model_name=self.llm_model_name, # Pass model hint
60
+ current_date=current_date_for_tasks # Defaults to today if None
61
  )
62
  logger.info("EnhancedLinkedInAnalyticsOrchestrator initialized.")
63
 
64
+ async def generate_full_analysis_and_tasks(
65
  self,
66
  follower_stats_df: pd.DataFrame,
67
  post_df: pd.DataFrame,
68
  mentions_df: pd.DataFrame
69
+ ) -> Dict[str, Any]:
70
  """
71
+ Executes the full pipeline: agent analyses, coordinator synthesis, and task extraction.
72
+ Args:
73
+ follower_stats_df: DataFrame containing follower statistics.
74
+ post_df: DataFrame containing post performance data.
75
+ mentions_df: DataFrame containing brand mentions data.
76
+ Returns:
77
+ A dictionary containing the comprehensive analysis text, actionable tasks (OKRs),
78
+ and the detailed metrics from each specialized agent.
79
  """
80
+ logger.info("Starting full analysis and task generation pipeline...")
81
 
82
+ # Step 1: Get analyses and metrics from specialized agents.
83
+ # The coordinator's internal agents are used here.
84
  logger.info("Running follower analysis...")
85
  follower_agent_metrics: AgentMetrics = self.coordinator.follower_agent.analyze_follower_data(follower_stats_df)
86
+ logger.info(f"Follower analysis complete. Summary: {follower_agent_metrics.analysis_summary[:100]}...")
87
 
88
  logger.info("Running post performance analysis...")
89
  post_agent_metrics: AgentMetrics = self.coordinator.post_agent.analyze_post_data(post_df)
90
+ logger.info(f"Post analysis complete. Summary: {post_agent_metrics.analysis_summary[:100]}...")
91
 
92
  logger.info("Running mentions analysis...")
93
  mentions_agent_metrics: AgentMetrics = self.coordinator.mentions_agent.analyze_mentions_data(mentions_df)
94
+ logger.info(f"Mentions analysis complete. Summary: {mentions_agent_metrics.analysis_summary[:100]}...")
95
 
96
+ # Step 2: Coordinator synthesizes these metrics into a comprehensive analysis text.
97
  logger.info("Running coordinator for synthesis...")
98
  comprehensive_analysis_text: str = await self.coordinator.generate_comprehensive_analysis(
99
  follower_agent_metrics, post_agent_metrics, mentions_agent_metrics
100
  )
101
  logger.info(f"Coordinator synthesis complete. Report length: {len(comprehensive_analysis_text)} chars.")
102
+ if not comprehensive_analysis_text or comprehensive_analysis_text.startswith("Error"):
103
+ logger.error(f"Coordinator synthesis failed or produced an error message: {comprehensive_analysis_text}")
104
+ # Potentially stop here or proceed with task extraction on whatever text was generated.
105
 
106
+ # Step 3: TaskExtractionAgent extracts actionable tasks (OKRs) from the comprehensive text.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
  logger.info("Running task extraction...")
108
+ #actionable_tasks_okrs: TaskExtractionOutput = await self.task_extractor.extract_tasks(comprehensive_analysis_text)
109
  actionable_tasks_okrs: TaskExtractionOutput = extract_tasks_from_text(comprehensive_analysis_text, GOOGLE_API_KEY)
110
  logger.info(f"Task extraction complete. Number of OKRs: {len(actionable_tasks_okrs.okrs) if actionable_tasks_okrs else 'Error'}.")
111
 
112
+ # Step 4: Compile and return all results.
113
+ # Convert Pydantic/dataclass objects to dicts for easier JSON serialization if the final output needs it.
114
+ # The `actionable_tasks_okrs` is already a Pydantic model, which can be serialized with .model_dump() / .json().
115
+ # `AgentMetrics` are dataclasses, use `asdict`.
116
+
117
  final_results = {
118
  "comprehensive_analysis_report": comprehensive_analysis_text,
119
+ "actionable_okrs_and_tasks": actionable_tasks_okrs.model_dump() if actionable_tasks_okrs else None, # Pydantic v2
120
+ # "actionable_okrs_and_tasks": actionable_tasks_okrs.dict() if actionable_tasks_okrs else None, # Pydantic v1
121
  "detailed_metrics": {
122
  "follower_agent": asdict(follower_agent_metrics) if follower_agent_metrics else None,
123
  "post_agent": asdict(post_agent_metrics) if post_agent_metrics else None,
124
  "mentions_agent": asdict(mentions_agent_metrics) if mentions_agent_metrics else None,
125
+ }
 
126
  }
127
+ logger.info("Full analysis and task generation pipeline finished successfully.")
128
+ return final_results
129
 
130
+ # Example usage (similar to the original script's main execution block)
131
+ if __name__ == '__main__':
132
+ import asyncio
133
+ import os
134
+ from utils.logging_config import setup_logging
135
+ from utils.data_fetching import fetch_linkedin_data_from_bubble, VALID_DATA_TYPES
136
+
137
+ setup_logging() # Configure logging for the application
138
+
139
+ # --- Configuration ---
140
+ # Attempt to get API key from environment variable
141
+ # IMPORTANT: Set GOOGLE_API_KEY and BUBBLE_API_KEY in your environment for this to run.
142
+ GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
143
+ BUBBLE_API_KEY_ENV = os.environ.get("BUBBLE_API_KEY") # Used by data_fetching
144
+
145
+ if not GOOGLE_API_KEY:
146
+ logger.critical("GOOGLE_API_KEY environment variable not set. Orchestrator cannot initialize LLM agents.")
147
+ exit(1)
148
+ if not BUBBLE_API_KEY_ENV: # data_fetching will also check, but good to note here
149
+ logger.warning("BUBBLE_API_KEY environment variable not set. Data fetching from Bubble will fail.")
150
+ # You might want to exit or use mock data if Bubble is essential.
151
+
152
+ # Set the Google Vertex AI environment variable if not using Vertex AI (as in original)
153
+ os.environ["GOOGLE_GENAI_USE_VERTEXAI"] = "False"
154
+
155
+ # Orchestrator settings
156
+ ORG_URN_EXAMPLE = "urn:li:organization:19010008" # Example, replace with actual
157
+ # Specify a model or let orchestrator/agents use their defaults
158
+ # LLM_MODEL_FOR_ORCHESTRATION = "gemini-2.5-flash-preview-05-20" # Example: use a powerful model
159
+ LLM_MODEL_FOR_ORCHESTRATION = None # Let agents use their defaults or pass a specific one
160
+
161
+ # --- Initialize Orchestrator ---
162
+ orchestrator = EnhancedLinkedInAnalyticsOrchestrator(
163
+ api_key=GOOGLE_API_KEY,
164
+ llm_model_name=LLM_MODEL_FOR_ORCHESTRATION,
165
+ current_date_for_tasks=datetime.utcnow().date() # Use today for task planning
166
+ )
167
+
168
+ # --- Data Fetching ---
169
+ logger.info(f"Fetching data for organization URN: {ORG_URN_EXAMPLE}")
170
+
171
+ # Helper to fetch and log
172
+ def get_data(data_type: VALID_DATA_TYPES, org_urn: str) -> pd.DataFrame:
173
+ df, error = fetch_linkedin_data_from_bubble(org_urn=org_urn, data_type=data_type)
174
+ if error:
175
+ logger.error(f"Error fetching {data_type}: {error}. Using empty DataFrame.")
176
+ return pd.DataFrame()
177
+ if df is None: # Should not happen if error is None, but as a safeguard
178
+ logger.warning(f"Fetched {data_type} is None but no error reported. Using empty DataFrame.")
179
+ return pd.DataFrame()
180
+ logger.info(f"Successfully fetched {data_type} with {len(df)} rows.")
181
+ return df
182
+
183
+ follower_stats_df_raw = get_data("li_follower_stats", ORG_URN_EXAMPLE)
184
+ posts_df_raw = get_data("LI_posts", ORG_URN_EXAMPLE) # Contains post content, media_type, etc.
185
+ mentions_df_raw = get_data("Li_mentions", ORG_URN_EXAMPLE)
186
+ post_stats_df_raw = get_data("LI_post_stats", ORG_URN_EXAMPLE) # Contains engagement numbers for posts
187
+
188
+ # --- Data Preprocessing/Merging (as in original example) ---
189
+
190
+ # Select relevant columns for follower_stats_df
191
+ if not follower_stats_df_raw.empty:
192
+ follower_stats_df = follower_stats_df_raw[[
193
+ 'category_name', "follower_count_organic", "follower_count_paid", "follower_count_type"
194
+ ]].copy()
195
+ else:
196
+ follower_stats_df = pd.DataFrame() # Ensure it's an empty DF if raw is empty
197
+
198
+ # Merge posts_df and post_stats_df
199
+ # This logic assumes 'id' in posts_df_raw and 'post_id' in post_stats_df_raw
200
+ merged_posts_df = pd.DataFrame()
201
+ if not posts_df_raw.empty and not post_stats_df_raw.empty:
202
+ if 'id' in posts_df_raw.columns and 'post_id' in post_stats_df_raw.columns:
203
+ # Ensure 'id' in posts_df_raw is unique before merge if it's a left table key
204
+ # posts_df_raw.drop_duplicates(subset=['id'], keep='first', inplace=True)
205
+ merged_posts_df = pd.merge(posts_df_raw, post_stats_df_raw, left_on='id', right_on='post_id', how='left', suffixes=('', '_stats'))
206
+ logger.info(f"Merged posts_df ({len(posts_df_raw)}) and post_stats_df ({len(post_stats_df_raw)}) into merged_posts_df ({len(merged_posts_df)}).")
207
+ else:
208
+ logger.warning("Cannot merge posts_df and post_stats_df due to missing 'id' or 'post_id'. Using posts_df_raw.")
209
+ merged_posts_df = posts_df_raw.copy() # Fallback to posts_df_raw
210
+ elif not posts_df_raw.empty:
211
+ logger.info("post_stats_df is empty. Using posts_df_raw for post analysis.")
212
+ merged_posts_df = posts_df_raw.copy()
213
+ else:
214
+ logger.warning("Both posts_df_raw and post_stats_df_raw are empty.")
215
+ merged_posts_df = pd.DataFrame() # Empty DF
216
+
217
+ # Select and ensure essential columns for merged_posts_df
218
+ # These are columns expected by EnhancedPostPerformanceAgent
219
+ expected_post_cols = [
220
+ 'li_eb_label', 'media_type', 'is_ad', 'id', 'published_at', 'sentiment',
221
+ 'engagement', 'impressionCount', 'clickCount', 'likeCount', 'commentCount', 'shareCount'
222
+ ]
223
+ if not merged_posts_df.empty:
224
+ final_post_df_cols = {}
225
+ for col in expected_post_cols:
226
+ if col in merged_posts_df.columns:
227
+ final_post_df_cols[col] = merged_posts_df[col]
228
+ elif f"{col}_stats" in merged_posts_df.columns: # Check for suffixed columns from merge
229
+ final_post_df_cols[col] = merged_posts_df[f"{col}_stats"]
230
+ else:
231
+ logger.debug(f"Expected column '{col}' not found in merged_posts_df. Will be created as empty/default by agent if needed.")
232
+ # Agent preprocessing should handle missing columns by creating them with defaults (0 or 'Unknown')
233
+
234
+ # Create the final DataFrame with only the selected/available columns
235
+ # This ensures that if a column is missing, it doesn't cause an error here,
236
+ # but the agent's preprocessing will handle it.
237
+ # However, it's better to ensure they exist with NAs if the agent expects them.
238
+ temp_post_df = pd.DataFrame(final_post_df_cols)
239
+ # Ensure all expected columns are present, filling with NA if missing from selection
240
+ for col in expected_post_cols:
241
+ if col not in temp_post_df.columns:
242
+ temp_post_df[col] = pd.NA # Or appropriate default like 0 for numeric, 'Unknown' for categorical
243
+ merged_posts_df = temp_post_df[expected_post_cols].copy() # Ensure correct order and all columns
244
+
245
+ else: # If merged_posts_df started empty and stayed empty
246
+ merged_posts_df = pd.DataFrame(columns=expected_post_cols)
247
+
248
+
249
+ # Mentions DataFrame - select relevant columns if necessary, or pass as is
250
+ # Assuming mentions_df_raw is already in the correct shape or agent handles it.
251
+ # For example, if it needs specific columns:
252
+ # mentions_df = mentions_df_raw[['date', 'sentiment_label', 'mention_content']].copy() if not mentions_df_raw.empty else pd.DataFrame()
253
+ mentions_df = mentions_df_raw.copy() # Pass as is, agent will preprocess
254
+
255
+
256
+ # --- Run Orchestration ---
257
+ async def main_orchestration():
258
+ if follower_stats_df.empty and merged_posts_df.empty and mentions_df.empty:
259
+ logger.error("All input DataFrames are empty. Aborting orchestration.")
260
+ return None
261
+
262
+ logger.info("Orchestrator starting generate_full_analysis_and_tasks...")
263
+ results = await orchestrator.generate_full_analysis_and_tasks(
264
+ follower_stats_df=follower_stats_df,
265
+ post_df=merged_posts_df,
266
+ mentions_df=mentions_df
267
+ )
268
+ return results
269
+
270
+ orchestration_results = asyncio.run(main_orchestration())
271
+
272
+ # --- Output Results ---
273
+ if orchestration_results:
274
+ print("\n\n" + "="*30 + " COMPREHENSIVE ANALYSIS REPORT " + "="*30)
275
+ print(orchestration_results.get("comprehensive_analysis_report", "Report not generated."))
276
+
277
+ print("\n\n" + "="*30 + " ACTIONABLE TASKS (OKRs) " + "="*30)
278
+ okrs_data = orchestration_results.get("actionable_okrs_and_tasks")
279
+ if okrs_data:
280
+ # okrs_data is already a dict from .model_dump()
281
+ print(json.dumps(okrs_data, indent=2))
282
+ else:
283
+ print("No actionable tasks (OKRs) generated or an error occurred.")
284
+
285
+ print("\n\n" + "="*30 + " DETAILED AGENT METRICS " + "="*30)
286
+ detailed_metrics = orchestration_results.get("detailed_metrics", {})
287
+ for agent_name, metrics_dict in detailed_metrics.items():
288
+ print(f"\n--- {agent_name.replace('_', ' ').title()} Metrics ---")
289
+ if metrics_dict:
290
+ print(json.dumps(metrics_dict, indent=2, default=str)) # default=str for any non-serializable types
291
+ else:
292
+ print("Metrics not available for this agent.")
293
+ else:
294
+ logger.info("Orchestration did not produce results (likely due to empty input data).")
295
+
296
+ logger.info("Orchestration example finished.")