Spaces:
Running
Running
Create mentions_dashboard.py
Browse files- mentions_dashboard.py +121 -0
mentions_dashboard.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mentions_dashboard.py
|
2 |
+
|
3 |
+
import json
|
4 |
+
import time
|
5 |
+
import re
|
6 |
+
import os
|
7 |
+
from datetime import datetime
|
8 |
+
|
9 |
+
from urllib.parse import quote
|
10 |
+
from requests_oauthlib import OAuth2Session
|
11 |
+
from textblob import TextBlob
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
|
14 |
+
|
15 |
+
def extract_text_from_commentary(commentary):
|
16 |
+
return re.sub(r"{.*?}", "", commentary).strip()
|
17 |
+
|
18 |
+
|
19 |
+
def analyze_sentiment(text):
|
20 |
+
return TextBlob(text).sentiment.polarity
|
21 |
+
|
22 |
+
|
23 |
+
def generate_mentions_dashboard(comm_client_id, comm_token_dict):
|
24 |
+
linkedin = OAuth2Session(comm_client_id, token=comm_token_dict)
|
25 |
+
|
26 |
+
org_urn = "urn:li:organization:19010008"
|
27 |
+
encoded_urn = quote(org_urn, safe='')
|
28 |
+
|
29 |
+
linkedin.headers.update({
|
30 |
+
"LinkedIn-Version": "202502",
|
31 |
+
"X-Restli-Protocol-Version": "2.0.0"
|
32 |
+
})
|
33 |
+
|
34 |
+
base_url = (
|
35 |
+
"https://api.linkedin.com/rest/organizationalEntityNotifications"
|
36 |
+
"?q=criteria"
|
37 |
+
"&actions=List(COMMENT,SHARE_MENTION)"
|
38 |
+
f"&organizationalEntity={encoded_urn}"
|
39 |
+
"&count=50"
|
40 |
+
)
|
41 |
+
|
42 |
+
all_notifications = []
|
43 |
+
start = 0
|
44 |
+
|
45 |
+
while True:
|
46 |
+
url = f"{base_url}&start={start}"
|
47 |
+
resp = linkedin.get(url)
|
48 |
+
if resp.status_code != 200:
|
49 |
+
break
|
50 |
+
|
51 |
+
data = resp.json()
|
52 |
+
elements = data.get("elements", [])
|
53 |
+
all_notifications.extend(elements)
|
54 |
+
|
55 |
+
if len(elements) < data.get("paging", {}).get("count", 0):
|
56 |
+
break
|
57 |
+
|
58 |
+
start += len(elements)
|
59 |
+
time.sleep(0.5)
|
60 |
+
|
61 |
+
# Extract mentions and their share URNs
|
62 |
+
mention_shares = [e.get("generatedActivity") for e in all_notifications if e.get("action") == "SHARE_MENTION"]
|
63 |
+
mention_data = []
|
64 |
+
|
65 |
+
for share_urn in mention_shares:
|
66 |
+
if not share_urn:
|
67 |
+
continue
|
68 |
+
encoded_share_urn = quote(share_urn, safe='')
|
69 |
+
share_url = f"https://api.linkedin.com/rest/posts/{encoded_share_urn}"
|
70 |
+
response = linkedin.get(share_url)
|
71 |
+
|
72 |
+
if response.status_code != 200:
|
73 |
+
continue
|
74 |
+
|
75 |
+
post = response.json()
|
76 |
+
commentary_raw = post.get("commentary", "")
|
77 |
+
if not commentary_raw:
|
78 |
+
continue
|
79 |
+
|
80 |
+
commentary = extract_text_from_commentary(commentary_raw)
|
81 |
+
sentiment = analyze_sentiment(commentary)
|
82 |
+
timestamp = post.get("createdAt", 0)
|
83 |
+
dt = datetime.fromtimestamp(timestamp / 1000.0)
|
84 |
+
|
85 |
+
mention_data.append({
|
86 |
+
"date": dt,
|
87 |
+
"text": commentary,
|
88 |
+
"sentiment": sentiment
|
89 |
+
})
|
90 |
+
|
91 |
+
# Save HTML
|
92 |
+
html_parts = ["<h2 style='text-align:center;'>📣 Mentions Sentiment Dashboard</h2>"]
|
93 |
+
for mention in mention_data:
|
94 |
+
html_parts.append(f"""
|
95 |
+
<div style='border:1px solid #ccc; border-radius:10px; padding:15px; margin:10px;'>
|
96 |
+
<p><strong>Date:</strong> {mention["date"].strftime('%Y-%m-%d')}</p>
|
97 |
+
<p>{mention["text"]}</p>
|
98 |
+
<p><strong>Sentiment:</strong> {mention["sentiment"]:.2f}</p>
|
99 |
+
</div>
|
100 |
+
""")
|
101 |
+
|
102 |
+
html_path = "mentions_dashboard.html"
|
103 |
+
with open(html_path, "w", encoding="utf-8") as f:
|
104 |
+
f.write("\n".join(html_parts))
|
105 |
+
|
106 |
+
# Plot
|
107 |
+
if mention_data:
|
108 |
+
dates = [m["date"] for m in mention_data]
|
109 |
+
sentiments = [m["sentiment"] for m in mention_data]
|
110 |
+
|
111 |
+
plt.figure(figsize=(10, 5))
|
112 |
+
plt.plot(dates, sentiments, marker='o', linestyle='-', color='blue')
|
113 |
+
plt.title("Sentiment Over Time")
|
114 |
+
plt.xlabel("Date")
|
115 |
+
plt.ylabel("Sentiment")
|
116 |
+
plt.grid(True)
|
117 |
+
plt.tight_layout()
|
118 |
+
plt.savefig("mentions_sentiment_plot.png")
|
119 |
+
plt.close()
|
120 |
+
|
121 |
+
return html_path
|