Spaces:
Running
Running
Update analytics_data_processing.py
Browse files- analytics_data_processing.py +24 -16
analytics_data_processing.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import pandas as pd
|
2 |
-
from datetime import datetime, timedelta
|
3 |
import logging
|
4 |
|
5 |
# Configure logging for this module
|
@@ -16,10 +16,14 @@ def filter_dataframe_by_date(df, date_column, start_date, end_date):
|
|
16 |
|
17 |
df_copy = df.copy() # Work on a copy to avoid SettingWithCopyWarning
|
18 |
try:
|
|
|
19 |
if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
|
20 |
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
|
|
|
|
|
|
|
21 |
except Exception as e:
|
22 |
-
logging.error(f"Error converting date column '{date_column}' to datetime: {e}")
|
23 |
return pd.DataFrame() # Return empty if conversion fails
|
24 |
|
25 |
df_filtered = df_copy.dropna(subset=[date_column])
|
@@ -27,21 +31,17 @@ def filter_dataframe_by_date(df, date_column, start_date, end_date):
|
|
27 |
logging.info(f"Filter by date: DataFrame became empty after dropping NaNs in date column '{date_column}'.")
|
28 |
return pd.DataFrame()
|
29 |
|
30 |
-
# Convert start_date and end_date
|
31 |
-
#
|
32 |
start_dt_obj = pd.to_datetime(start_date, errors='coerce').normalize() if start_date else None
|
33 |
end_dt_obj = pd.to_datetime(end_date, errors='coerce').normalize() if end_date else None
|
34 |
|
35 |
|
36 |
if start_dt_obj and end_dt_obj:
|
37 |
-
# Ensure the DataFrame's date column is also normalized if it contains time
|
38 |
-
df_filtered[date_column] = df_filtered[date_column].dt.normalize()
|
39 |
return df_filtered[(df_filtered[date_column] >= start_dt_obj) & (df_filtered[date_column] <= end_dt_obj)]
|
40 |
elif start_dt_obj:
|
41 |
-
df_filtered[date_column] = df_filtered[date_column].dt.normalize()
|
42 |
return df_filtered[df_filtered[date_column] >= start_dt_obj]
|
43 |
elif end_dt_obj:
|
44 |
-
df_filtered[date_column] = df_filtered[date_column].dt.normalize()
|
45 |
return df_filtered[df_filtered[date_column] <= end_dt_obj]
|
46 |
return df_filtered # No date filtering if neither start_date nor end_date is provided
|
47 |
|
@@ -62,20 +62,28 @@ def prepare_filtered_analytics_data(token_state_value, date_filter_option, custo
|
|
62 |
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
|
63 |
|
64 |
# Determine date range for filtering posts and mentions
|
65 |
-
#
|
66 |
-
|
|
|
|
|
67 |
end_dt_filter = current_time_normalized
|
68 |
start_dt_filter = None
|
69 |
|
70 |
if date_filter_option == "Last 7 Days":
|
71 |
-
start_dt_filter = current_time_normalized - timedelta(days=6)
|
72 |
elif date_filter_option == "Last 30 Days":
|
73 |
-
start_dt_filter = current_time_normalized - timedelta(days=29)
|
74 |
elif date_filter_option == "Custom Range":
|
75 |
-
|
76 |
-
#
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
logging.info(f"Date range for filtering: Start: {start_dt_filter}, End: {end_dt_filter}")
|
81 |
|
|
|
1 |
import pandas as pd
|
2 |
+
from datetime import datetime, timedelta, time # Added time for min.time
|
3 |
import logging
|
4 |
|
5 |
# Configure logging for this module
|
|
|
16 |
|
17 |
df_copy = df.copy() # Work on a copy to avoid SettingWithCopyWarning
|
18 |
try:
|
19 |
+
# Convert the DataFrame's date column to pandas datetime objects first
|
20 |
if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
|
21 |
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
|
22 |
+
# Normalize the DataFrame's date column to midnight (date part only)
|
23 |
+
df_copy[date_column] = df_copy[date_column].dt.normalize()
|
24 |
+
|
25 |
except Exception as e:
|
26 |
+
logging.error(f"Error converting or normalizing date column '{date_column}' to datetime: {e}")
|
27 |
return pd.DataFrame() # Return empty if conversion fails
|
28 |
|
29 |
df_filtered = df_copy.dropna(subset=[date_column])
|
|
|
31 |
logging.info(f"Filter by date: DataFrame became empty after dropping NaNs in date column '{date_column}'.")
|
32 |
return pd.DataFrame()
|
33 |
|
34 |
+
# Convert start_date and end_date (which are expected to be datetime.datetime or None)
|
35 |
+
# to pandas Timestamps and normalize them for comparison
|
36 |
start_dt_obj = pd.to_datetime(start_date, errors='coerce').normalize() if start_date else None
|
37 |
end_dt_obj = pd.to_datetime(end_date, errors='coerce').normalize() if end_date else None
|
38 |
|
39 |
|
40 |
if start_dt_obj and end_dt_obj:
|
|
|
|
|
41 |
return df_filtered[(df_filtered[date_column] >= start_dt_obj) & (df_filtered[date_column] <= end_dt_obj)]
|
42 |
elif start_dt_obj:
|
|
|
43 |
return df_filtered[df_filtered[date_column] >= start_dt_obj]
|
44 |
elif end_dt_obj:
|
|
|
45 |
return df_filtered[df_filtered[date_column] <= end_dt_obj]
|
46 |
return df_filtered # No date filtering if neither start_date nor end_date is provided
|
47 |
|
|
|
62 |
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
|
63 |
|
64 |
# Determine date range for filtering posts and mentions
|
65 |
+
# Normalize current time to midnight using datetime.replace
|
66 |
+
current_datetime_obj = datetime.now()
|
67 |
+
current_time_normalized = current_datetime_obj.replace(hour=0, minute=0, second=0, microsecond=0)
|
68 |
+
|
69 |
end_dt_filter = current_time_normalized
|
70 |
start_dt_filter = None
|
71 |
|
72 |
if date_filter_option == "Last 7 Days":
|
73 |
+
start_dt_filter = current_time_normalized - timedelta(days=6)
|
74 |
elif date_filter_option == "Last 30 Days":
|
75 |
+
start_dt_filter = current_time_normalized - timedelta(days=29)
|
76 |
elif date_filter_option == "Custom Range":
|
77 |
+
# custom_start_date and custom_end_date are strings from gr.DateTime(type="string")
|
78 |
+
# Convert to datetime objects and then normalize
|
79 |
+
start_dt_filter_temp = pd.to_datetime(custom_start_date, errors='coerce')
|
80 |
+
start_dt_filter = start_dt_filter_temp.replace(hour=0, minute=0, second=0, microsecond=0) if pd.notna(start_dt_filter_temp) else None
|
81 |
+
|
82 |
+
end_dt_filter_temp = pd.to_datetime(custom_end_date, errors='coerce')
|
83 |
+
# If custom_end_date is not provided or invalid, use current_time_normalized
|
84 |
+
end_dt_filter = end_dt_filter_temp.replace(hour=0, minute=0, second=0, microsecond=0) if pd.notna(end_dt_filter_temp) else current_time_normalized
|
85 |
+
|
86 |
+
# "All Time" means start_dt_filter remains None, end_dt_filter effectively means up to now.
|
87 |
|
88 |
logging.info(f"Date range for filtering: Start: {start_dt_filter}, End: {end_dt_filter}")
|
89 |
|