Spaces:
Running
Running
Update analytics_fetch_and_rendering.py
Browse files- analytics_fetch_and_rendering.py +87 -288
analytics_fetch_and_rendering.py
CHANGED
@@ -1,349 +1,148 @@
|
|
1 |
import json
|
2 |
import requests
|
3 |
-
from
|
4 |
-
|
5 |
-
import matplotlib.pyplot as plt # Added for plotting
|
6 |
-
from error_handling import display_error
|
7 |
import gradio as gr
|
8 |
import traceback
|
9 |
import html
|
10 |
|
|
|
|
|
11 |
|
12 |
API_V2_BASE = 'https://api.linkedin.com/v2'
|
13 |
-
API_REST_BASE =
|
14 |
|
15 |
def extract_follower_gains(data):
|
16 |
-
"""Extracts monthly follower gains from API response."""
|
17 |
-
results = []
|
18 |
-
print(f"Raw gains data received for extraction: {json.dumps(data, indent=2)}") # Debug print
|
19 |
elements = data.get("elements", [])
|
20 |
if not elements:
|
21 |
-
print("Warning: No 'elements' found in follower statistics response.")
|
22 |
return []
|
23 |
|
|
|
24 |
for item in elements:
|
25 |
-
|
26 |
-
|
27 |
-
if start_timestamp is None:
|
28 |
-
print("Warning: Skipping item due to missing start timestamp.")
|
29 |
continue
|
30 |
|
31 |
-
# Convert timestamp to YYYY-MM format for clearer labeling
|
32 |
-
# Use UTC timezone explicitly
|
33 |
try:
|
34 |
-
|
35 |
-
|
36 |
-
date_str = date_obj.strftime('%Y-%m')
|
37 |
-
except Exception as time_e:
|
38 |
-
print(f"Warning: Could not parse timestamp {start_timestamp}. Error: {time_e}. Skipping item.")
|
39 |
continue
|
40 |
|
41 |
-
|
42 |
-
# Handle potential None values from API by defaulting to 0
|
43 |
-
organic_gain = follower_gains.get("organicFollowerGain", 0) or 0
|
44 |
-
paid_gain = follower_gains.get("paidFollowerGain", 0) or 0
|
45 |
-
|
46 |
results.append({
|
47 |
-
"date": date_str,
|
48 |
-
"organic":
|
49 |
-
"paid":
|
50 |
})
|
51 |
|
52 |
-
|
53 |
-
# Sort results by date string to ensure chronological order for plotting
|
54 |
-
try:
|
55 |
-
results.sort(key=lambda x: x['date'])
|
56 |
-
except Exception as sort_e:
|
57 |
-
print(f"Warning: Could not sort follower gains by date. Error: {sort_e}")
|
58 |
-
|
59 |
-
print(f"Extracted follower gains (sorted): {results}")
|
60 |
-
return results
|
61 |
|
62 |
-
def fetch_analytics_data(
|
63 |
-
|
64 |
-
print("--- Fetching Analytics Data ---")
|
65 |
-
if not comm_token:
|
66 |
raise ValueError("comm_token is missing.")
|
67 |
|
68 |
-
token_dict =
|
69 |
-
|
70 |
|
71 |
try:
|
72 |
-
# 1. Fetch Org URN and Name
|
73 |
-
print("Fetching Org URN for analytics...")
|
74 |
-
# This function already handles errors and raises ValueError
|
75 |
-
#org_urn, org_name = fetch_org_urn(token_dict)
|
76 |
org_urn, org_name = "urn:li:organization:19010008", "GRLS"
|
77 |
-
print(f"Analytics using Org: {org_name} ({org_urn})")
|
78 |
|
79 |
-
# 2. Fetch Follower Count (v2 API)
|
80 |
-
# Endpoint requires r_organization_social permission
|
81 |
-
print("Fetching follower count...")
|
82 |
count_url = f"{API_V2_BASE}/networkSizes/{org_urn}?edgeType=CompanyFollowedByMember"
|
83 |
-
|
84 |
-
resp_count = ln_mkt.get(count_url)
|
85 |
-
print(f"→ COUNT Response Status: {resp_count.status_code}")
|
86 |
-
print(f"→ COUNT Response Body: {resp_count.text}")
|
87 |
-
resp_count.raise_for_status() # Check for HTTP errors
|
88 |
-
count_data = resp_count.json()
|
89 |
-
# The follower count is in 'firstDegreeSize'
|
90 |
-
follower_count = count_data.get("firstDegreeSize", 0)
|
91 |
-
print(f"Follower count: {follower_count}")
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
print("Fetching follower gains...")
|
97 |
-
# Calculate start date: 12 months ago, beginning of that month, UTC
|
98 |
-
now = datetime.now(timezone.utc)
|
99 |
-
# Go back roughly 365 days
|
100 |
-
twelve_months_ago = now - timedelta(days=365)
|
101 |
-
# Set to the first day of that month
|
102 |
-
start_of_period = twelve_months_ago.replace(day=1, hour=0, minute=0, second=0, microsecond=0)
|
103 |
-
start_ms = int(start_of_period.timestamp() * 1000)
|
104 |
-
print(f"Requesting gains starting from: {start_of_period.strftime('%Y-%m-%d %H:%M:%S %Z')} ({start_ms} ms)")
|
105 |
|
106 |
gains_url = (
|
107 |
f"{API_REST_BASE}/organizationalEntityFollowerStatistics"
|
108 |
-
f"?q=organizationalEntity"
|
109 |
-
f"&organizationalEntity={org_urn}"
|
110 |
f"&timeIntervals.timeGranularityType=MONTH"
|
111 |
f"&timeIntervals.timeRange.start={start_ms}"
|
112 |
-
# No end date needed to get data up to the latest available month
|
113 |
)
|
114 |
-
|
115 |
-
|
116 |
-
print(f"→ GAINS Request Headers: {resp_gains.request.headers}")
|
117 |
-
print(f"→ GAINS Response Status: {resp_gains.status_code}")
|
118 |
-
print(f"→ GAINS Response Body (first 500 chars): {resp_gains.text[:500]}")
|
119 |
-
resp_gains.raise_for_status() # Check for HTTP errors
|
120 |
-
gains_data = resp_gains.json()
|
121 |
-
|
122 |
-
# 4. Process Gains Data using the extraction function
|
123 |
-
follower_gains_list = extract_follower_gains(gains_data)
|
124 |
|
125 |
-
|
126 |
-
return org_name, follower_count, follower_gains_list
|
127 |
|
128 |
except requests.exceptions.RequestException as e:
|
129 |
-
status = e.response
|
130 |
-
|
131 |
-
|
132 |
-
try:
|
133 |
-
details = f" Details: {e.response.json()}"
|
134 |
-
except json.JSONDecodeError:
|
135 |
-
details = f" Response: {e.response.text[:200]}..."
|
136 |
-
print(f"ERROR fetching analytics data (Status: {status}).{details}")
|
137 |
-
# Re-raise a user-friendly error, including the original exception context
|
138 |
-
raise ValueError(f"Failed to fetch analytics data from LinkedIn API (Status: {status}). Check permissions (r_organization_social) and API status.") from e
|
139 |
-
except ValueError as ve:
|
140 |
-
# Catch ValueErrors raised by fetch_org_urn
|
141 |
-
print(f"ERROR during analytics data fetch (likely Org URN): {ve}")
|
142 |
-
raise ve # Re-raise the specific error message
|
143 |
except Exception as e:
|
144 |
-
|
145 |
-
tb = traceback.format_exc()
|
146 |
-
print(tb)
|
147 |
-
raise ValueError(f"An unexpected error occurred while fetching or processing analytics data.") from e
|
148 |
|
|
|
|
|
149 |
|
150 |
-
|
151 |
-
"""Generates a matplotlib plot for follower gains. Returns the figure object."""
|
152 |
-
print(f"Plotting follower gains data: {follower_data}")
|
153 |
-
plt.style.use('seaborn-v0_8-whitegrid') # Use a nice style
|
154 |
-
|
155 |
-
if not follower_data:
|
156 |
-
print("No follower data to plot.")
|
157 |
-
# Create an empty plot with a message
|
158 |
fig, ax = plt.subplots(figsize=(10, 5))
|
159 |
-
ax.text(0.5, 0.5, 'No follower gains data
|
160 |
-
|
161 |
-
|
162 |
-
ax.set_title('Monthly Follower Gains (Last 12 Months)')
|
163 |
-
ax.set_xlabel('Month')
|
164 |
-
ax.set_ylabel('Follower Gains')
|
165 |
-
# Remove ticks if there's no data
|
166 |
-
ax.set_xticks([])
|
167 |
-
ax.set_yticks([])
|
168 |
-
plt.tight_layout()
|
169 |
-
return fig # Return the figure object
|
170 |
-
|
171 |
-
try:
|
172 |
-
# Ensure data is sorted by date (should be done in extract_follower_gains, but double-check)
|
173 |
-
follower_data.sort(key=lambda x: x['date'])
|
174 |
-
|
175 |
-
dates = [entry['date'] for entry in follower_data] # Should be 'YYYY-MM' strings
|
176 |
-
organic_gains = [entry['organic'] for entry in follower_data]
|
177 |
-
paid_gains = [entry['paid'] for entry in follower_data]
|
178 |
-
|
179 |
-
# Create the plot
|
180 |
-
fig, ax = plt.subplots(figsize=(12, 6)) # Use fig, ax pattern
|
181 |
-
|
182 |
-
ax.plot(dates, organic_gains, label='Organic Follower Gain', marker='o', linestyle='-', color='#0073b1') # LinkedIn blue
|
183 |
-
ax.plot(dates, paid_gains, label='Paid Follower Gain', marker='x', linestyle='--', color='#d9534f') # Reddish color
|
184 |
-
|
185 |
-
# Customize the plot
|
186 |
-
ax.set_xlabel('Month (YYYY-MM)')
|
187 |
-
ax.set_ylabel('Number of New Followers')
|
188 |
-
ax.set_title('Monthly Follower Gains (Last 12 Months)')
|
189 |
-
|
190 |
-
# Improve x-axis label readability
|
191 |
-
# Show fewer labels if there are many months
|
192 |
-
tick_frequency = max(1, len(dates) // 10) # Show label roughly every N months
|
193 |
-
ax.set_xticks(dates[::tick_frequency])
|
194 |
-
ax.tick_params(axis='x', rotation=45, labelsize=9) # Rotate and adjust size
|
195 |
-
|
196 |
-
ax.legend(title="Gain Type")
|
197 |
-
ax.grid(True, linestyle='--', alpha=0.6) # Lighter grid
|
198 |
-
|
199 |
-
# Add value labels on top of bars/points (optional, can get crowded)
|
200 |
-
# for i, (org, paid) in enumerate(zip(organic_gains, paid_gains)):
|
201 |
-
# if org > 0: ax.text(i, org, f'{org}', ha='center', va='bottom', fontsize=8)
|
202 |
-
# if paid > 0: ax.text(i, paid, f'{paid}', ha='center', va='bottom', fontsize=8, color='red')
|
203 |
-
|
204 |
-
|
205 |
-
plt.tight_layout() # Adjust layout to prevent labels from overlapping
|
206 |
-
|
207 |
-
print("Successfully generated follower gains plot.")
|
208 |
-
# Return the figure object for Gradio
|
209 |
-
return fig
|
210 |
-
except Exception as plot_e:
|
211 |
-
print(f"ERROR generating follower gains plot: {plot_e}")
|
212 |
-
tb = traceback.format_exc()
|
213 |
-
print(tb)
|
214 |
-
# Return an empty plot with an error message if plotting fails
|
215 |
-
fig, ax = plt.subplots(figsize=(10, 5))
|
216 |
-
ax.text(0.5, 0.5, f'Error generating plot: {plot_e}',
|
217 |
-
horizontalalignment='center', verticalalignment='center',
|
218 |
-
transform=ax.transAxes, fontsize=12, color='red', wrap=True)
|
219 |
-
ax.set_title('Follower Gains Plot Error')
|
220 |
-
plt.tight_layout()
|
221 |
return fig
|
222 |
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
fig, ax = plt.subplots(figsize=(10, 5))
|
232 |
-
ax.text(0.5, 0.5, 'No data
|
233 |
-
|
234 |
-
|
235 |
-
ax.set_title('Monthly Follower Growth Rate (%)')
|
236 |
-
ax.set_xticks([])
|
237 |
-
ax.set_yticks([])
|
238 |
-
plt.tight_layout()
|
239 |
return fig
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
dates = [entry['date'] for entry in follower_data]
|
244 |
-
total_gains = [entry['organic'] + entry['paid'] for entry in follower_data]
|
245 |
-
|
246 |
-
# Reconstruct monthly total followers backwards from the current total
|
247 |
-
followers_at_end_of_month = []
|
248 |
-
current_total = total_follower_count
|
249 |
-
for gain in reversed(total_gains):
|
250 |
-
followers_at_end_of_month.insert(0, current_total)
|
251 |
-
current_total -= gain
|
252 |
-
|
253 |
-
# followers_at_end_of_month now contains follower totals at end of each month
|
254 |
-
growth_rates = []
|
255 |
-
for i in range(1, len(followers_at_end_of_month)):
|
256 |
-
start = followers_at_end_of_month[i - 1]
|
257 |
-
end = followers_at_end_of_month[i]
|
258 |
-
rate = ((end - start) / start * 100) if start > 0 else 0
|
259 |
-
growth_rates.append(rate)
|
260 |
-
|
261 |
-
# Trim the first date (because we start calculating growth from second month)
|
262 |
-
rate_dates = dates[1:]
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
ax.grid(True, linestyle='--', alpha=0.6)
|
270 |
-
tick_frequency = max(1, len(rate_dates) // 10)
|
271 |
-
ax.set_xticks(rate_dates[::tick_frequency])
|
272 |
-
ax.tick_params(axis='x', rotation=45, labelsize=9)
|
273 |
-
ax.legend()
|
274 |
|
275 |
-
|
276 |
-
print("Successfully generated growth rate plot.")
|
277 |
-
return fig
|
278 |
-
|
279 |
-
except Exception as e:
|
280 |
-
print(f"ERROR generating growth rate plot: {e}")
|
281 |
-
tb = traceback.format_exc()
|
282 |
-
print(tb)
|
283 |
-
fig, ax = plt.subplots(figsize=(10, 5))
|
284 |
-
ax.text(0.5, 0.5, f'Error generating growth rate plot: {e}',
|
285 |
-
horizontalalignment='center', verticalalignment='center',
|
286 |
-
transform=ax.transAxes, fontsize=12, color='red', wrap=True)
|
287 |
-
ax.set_title('Follower Growth Rate Plot Error')
|
288 |
-
plt.tight_layout()
|
289 |
-
return fig
|
290 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
|
|
|
|
|
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
# Initial state for outputs
|
297 |
-
count_output = gr.update(value="<p>Loading follower count...</p>", visible=True)
|
298 |
-
plot_output = gr.update(value=None, visible=False) # Hide plot initially
|
299 |
-
|
300 |
-
if not comm_token:
|
301 |
-
print("ERROR: Marketing token missing for analytics.")
|
302 |
-
error_msg = "<p style='color: red; text-align: center; font-weight: bold;'>❌ Error: Missing LinkedIn Marketing token. Please complete the login process first.</p>"
|
303 |
-
return gr.update(value=error_msg, visible=True), gr.update(value=None, visible=False)
|
304 |
|
305 |
try:
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
<p style='font-size:
|
313 |
-
<p style='font-size:
|
314 |
-
<p style='font-size: 2.8em; font-weight: bold; color: #0073b1; margin: 0;'>{follower_count:,}</p>
|
315 |
-
<p style='font-size: 0.9em; color: #777; margin-top: 5px;'>(As of latest data available)</p>
|
316 |
</div>
|
317 |
"""
|
318 |
-
|
319 |
-
|
320 |
-
# Generate plot
|
321 |
-
print("Generating follower gains plot...")
|
322 |
-
plot_fig = plot_follower_gains(follower_gains_list)
|
323 |
-
# If plot generation failed, plot_fig might contain an error message plot
|
324 |
-
plot_output = gr.update(value=plot_fig, visible=True)
|
325 |
-
|
326 |
-
# Generate follower growth rate plot
|
327 |
-
growth_rate_fig = plot_growth_rate(follower_gains_list, follower_count)
|
328 |
-
growth_output = gr.update(value=growth_rate_fig, visible=True)
|
329 |
-
|
330 |
-
return count_output, plot_output, growth_output
|
331 |
|
332 |
-
except (ValueError, requests.exceptions.RequestException) as api_ve:
|
333 |
-
# Catch specific API or configuration errors from fetch_analytics_data
|
334 |
-
print(f"API or VALUE ERROR during analytics fetch: {api_ve}")
|
335 |
-
error_update = display_error(f"Failed to load analytics: {api_ve}", api_ve)
|
336 |
-
# Show error in the count area, hide plot
|
337 |
-
return gr.update(value=error_update.get('value', "<p style='color: red;'>Error loading follower count.</p>"), visible=True), gr.update(value=None, visible=False)
|
338 |
except Exception as e:
|
339 |
-
|
340 |
-
|
341 |
-
tb = traceback.format_exc()
|
342 |
-
print(tb)
|
343 |
-
error_update = display_error("An unexpected error occurred while loading analytics.", e)
|
344 |
-
error_html = error_update.get('value', "<p style='color: red;'>An unexpected error occurred.</p>")
|
345 |
-
# Ensure the error message is HTML-safe
|
346 |
-
if isinstance(error_html, str) and not error_html.strip().startswith("<"):
|
347 |
-
error_html = f"<pre style='color: red; white-space: pre-wrap;'>{html.escape(error_html)}</pre>"
|
348 |
-
# Show error in the count area, hide plot
|
349 |
-
return gr.update(value=error_html, visible=True), gr.update(value=None, visible=False)
|
|
|
1 |
import json
|
2 |
import requests
|
3 |
+
from datetime import datetime, timezone, timedelta
|
4 |
+
import matplotlib.pyplot as plt
|
|
|
|
|
5 |
import gradio as gr
|
6 |
import traceback
|
7 |
import html
|
8 |
|
9 |
+
from sessions import create_session
|
10 |
+
from error_handling import display_error
|
11 |
|
12 |
API_V2_BASE = 'https://api.linkedin.com/v2'
|
13 |
+
API_REST_BASE = 'https://api.linkedin.com/rest'
|
14 |
|
15 |
def extract_follower_gains(data):
|
|
|
|
|
|
|
16 |
elements = data.get("elements", [])
|
17 |
if not elements:
|
|
|
18 |
return []
|
19 |
|
20 |
+
results = []
|
21 |
for item in elements:
|
22 |
+
start_timestamp = item.get("timeRange", {}).get("start")
|
23 |
+
if not start_timestamp:
|
|
|
|
|
24 |
continue
|
25 |
|
|
|
|
|
26 |
try:
|
27 |
+
date_str = datetime.fromtimestamp(start_timestamp / 1000, tz=timezone.utc).strftime('%Y-%m')
|
28 |
+
except Exception:
|
|
|
|
|
|
|
29 |
continue
|
30 |
|
31 |
+
gains = item.get("followerGains", {})
|
|
|
|
|
|
|
|
|
32 |
results.append({
|
33 |
+
"date": date_str,
|
34 |
+
"organic": gains.get("organicFollowerGain", 0) or 0,
|
35 |
+
"paid": gains.get("paidFollowerGain", 0) or 0
|
36 |
})
|
37 |
|
38 |
+
return sorted(results, key=lambda x: x['date'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
def fetch_analytics_data(client_id, token):
|
41 |
+
if not token:
|
|
|
|
|
42 |
raise ValueError("comm_token is missing.")
|
43 |
|
44 |
+
token_dict = token if isinstance(token, dict) else {'access_token': token, 'token_type': 'Bearer'}
|
45 |
+
session = create_session(client_id, token=token_dict)
|
46 |
|
47 |
try:
|
|
|
|
|
|
|
|
|
48 |
org_urn, org_name = "urn:li:organization:19010008", "GRLS"
|
|
|
49 |
|
|
|
|
|
|
|
50 |
count_url = f"{API_V2_BASE}/networkSizes/{org_urn}?edgeType=CompanyFollowedByMember"
|
51 |
+
follower_count = session.get(count_url).json().get("firstDegreeSize", 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
start = datetime.now(timezone.utc) - timedelta(days=365)
|
54 |
+
start = start.replace(day=1, hour=0, minute=0, second=0, microsecond=0)
|
55 |
+
start_ms = int(start.timestamp() * 1000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
gains_url = (
|
58 |
f"{API_REST_BASE}/organizationalEntityFollowerStatistics"
|
59 |
+
f"?q=organizationalEntity&organizationalEntity={org_urn}"
|
|
|
60 |
f"&timeIntervals.timeGranularityType=MONTH"
|
61 |
f"&timeIntervals.timeRange.start={start_ms}"
|
|
|
62 |
)
|
63 |
+
gains_data = session.get(gains_url).json()
|
64 |
+
gains = extract_follower_gains(gains_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
return org_name, follower_count, gains
|
|
|
67 |
|
68 |
except requests.exceptions.RequestException as e:
|
69 |
+
status = getattr(e.response, 'status_code', 'N/A')
|
70 |
+
msg = f"Failed to fetch LinkedIn analytics (Status: {status})."
|
71 |
+
raise ValueError(msg) from e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
except Exception as e:
|
73 |
+
raise ValueError("Unexpected error during LinkedIn analytics fetch.") from e
|
|
|
|
|
|
|
74 |
|
75 |
+
def plot_follower_gains(data):
|
76 |
+
plt.style.use('seaborn-v0_8-whitegrid')
|
77 |
|
78 |
+
if not data:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
fig, ax = plt.subplots(figsize=(10, 5))
|
80 |
+
ax.text(0.5, 0.5, 'No follower gains data.', ha='center', va='center', transform=ax.transAxes)
|
81 |
+
ax.set_title('Monthly Follower Gains')
|
82 |
+
ax.set_xticks([]); ax.set_yticks([])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
return fig
|
84 |
|
85 |
+
dates = [d['date'] for d in data]
|
86 |
+
organic = [d['organic'] for d in data]
|
87 |
+
paid = [d['paid'] for d in data]
|
88 |
+
|
89 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
90 |
+
ax.plot(dates, organic, label='Organic', marker='o', color='#0073b1')
|
91 |
+
ax.plot(dates, paid, label='Paid', marker='x', linestyle='--', color='#d9534f')
|
92 |
+
ax.set(title='Monthly Follower Gains', xlabel='Month', ylabel='New Followers')
|
93 |
+
ax.tick_params(axis='x', rotation=45)
|
94 |
+
ax.legend()
|
95 |
+
plt.tight_layout()
|
96 |
+
return fig
|
97 |
+
|
98 |
+
def plot_growth_rate(data, total):
|
99 |
+
if not data:
|
100 |
fig, ax = plt.subplots(figsize=(10, 5))
|
101 |
+
ax.text(0.5, 0.5, 'No data for growth rate.', ha='center', va='center', transform=ax.transAxes)
|
102 |
+
ax.set_title('Growth Rate (%)')
|
103 |
+
ax.set_xticks([]); ax.set_yticks([])
|
|
|
|
|
|
|
|
|
104 |
return fig
|
105 |
|
106 |
+
dates = [d['date'] for d in data]
|
107 |
+
gains = [d['organic'] + d['paid'] for d in data]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
history = []
|
110 |
+
current = total
|
111 |
+
for g in reversed(gains):
|
112 |
+
history.insert(0, current)
|
113 |
+
current -= g
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
rates = [((history[i] - history[i-1]) / history[i-1] * 100 if history[i-1] else 0) for i in range(1, len(history))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
118 |
+
ax.plot(dates[1:], rates, label='Growth Rate (%)', marker='o', color='green')
|
119 |
+
ax.set(title='Monthly Growth Rate (%)', xlabel='Month', ylabel='Growth %')
|
120 |
+
ax.tick_params(axis='x', rotation=45)
|
121 |
+
ax.legend()
|
122 |
+
plt.tight_layout()
|
123 |
+
return fig
|
124 |
|
125 |
+
def fetch_and_render_analytics(client_id, token):
|
126 |
+
loading = gr.update(value="<p>Loading follower count...</p>", visible=True)
|
127 |
+
hidden = gr.update(value=None, visible=False)
|
128 |
|
129 |
+
if not token:
|
130 |
+
error = "<p style='color:red;'>❌ Missing token. Please log in.</p>"
|
131 |
+
return gr.update(value=error, visible=True), hidden, hidden
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
try:
|
134 |
+
name, count, gains = fetch_analytics_data(client_id, token)
|
135 |
+
|
136 |
+
count_html = f"""
|
137 |
+
<div style='text-align:center; padding:20px; background:#e7f3ff; border:1px solid #bce8f1; border-radius:8px;'>
|
138 |
+
<p style='font-size:1.1em; color:#31708f;'>Total Followers for</p>
|
139 |
+
<p style='font-size:1.4em; font-weight:bold; color:#005a9e;'>{html.escape(name)}</p>
|
140 |
+
<p style='font-size:2.8em; font-weight:bold; color:#0073b1;'>{count:,}</p>
|
141 |
+
<p style='font-size:0.9em; color:#777;'>(As of latest data)</p>
|
|
|
|
|
142 |
</div>
|
143 |
"""
|
144 |
+
return gr.update(value=count_html, visible=True), gr.update(value=plot_follower_gains(gains), visible=True), gr.update(value=plot_growth_rate(gains, count), visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
except Exception as e:
|
147 |
+
error = display_error("Analytics load failed.", e).get('value', "<p style='color:red;'>Error loading data.</p>")
|
148 |
+
return gr.update(value=error, visible=True), hidden, hidden
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|