Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,60 +3,58 @@ import gradio as gr
|
|
3 |
import pandas as pd
|
4 |
import os
|
5 |
import logging
|
|
|
6 |
import matplotlib
|
7 |
matplotlib.use('Agg') # Set backend for Matplotlib
|
8 |
-
import matplotlib.pyplot as plt
|
9 |
-
import time
|
10 |
-
from datetime import datetime, timedelta
|
11 |
-
import numpy as np
|
12 |
-
from collections import OrderedDict, defaultdict # Added defaultdict
|
13 |
-
import asyncio
|
14 |
|
15 |
# --- Module Imports ---
|
16 |
from utils.gradio_utils import get_url_user_token
|
17 |
|
18 |
# Functions from newly created/refactored modules
|
19 |
from config import (
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
23 |
)
|
24 |
-
from
|
25 |
-
from services.
|
26 |
from ui.ui_generators import (
|
27 |
display_main_dashboard,
|
28 |
-
build_analytics_tab_plot_area,
|
29 |
-
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
|
30 |
)
|
31 |
-
from ui.analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot
|
32 |
-
from formulas import PLOT_FORMULAS
|
33 |
|
34 |
-
# ---
|
35 |
-
from features.chatbot.chatbot_prompts import get_initial_insight_prompt_and_suggestions
|
36 |
-
from features.chatbot.chatbot_handler import generate_llm_response
|
37 |
|
38 |
-
# ---
|
39 |
try:
|
40 |
-
|
41 |
-
from
|
42 |
-
|
43 |
-
)
|
44 |
AGENTIC_MODULES_LOADED = True
|
45 |
-
except:
|
46 |
-
logging.error(f"Could not import agentic pipeline modules: {e}. Tabs 3 and 4 will be disabled.")
|
47 |
AGENTIC_MODULES_LOADED = False
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
from services.analytics_tab_module import AnalyticsTab # Assuming analytics_tab_module.py is in the services directory
|
54 |
|
55 |
# Configure logging
|
56 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
|
57 |
|
58 |
# API Key Setup
|
59 |
-
os.environ["GOOGLE_GENAI_USE_VERTEXAI"] = "False"
|
60 |
user_provided_api_key = os.environ.get("GEMINI_API_KEY")
|
61 |
if user_provided_api_key:
|
62 |
os.environ["GOOGLE_API_KEY"] = user_provided_api_key
|
@@ -66,45 +64,50 @@ else:
|
|
66 |
|
67 |
|
68 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
69 |
-
|
|
|
70 |
token_state = gr.State(value={
|
71 |
"token": None, "client_id": None, "org_urn": None,
|
72 |
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
|
73 |
-
"bubble_mentions_df": pd.DataFrame(),
|
74 |
-
"
|
75 |
-
"
|
|
|
76 |
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
|
77 |
"config_date_col_followers": "date", "config_media_type_col": "media_type",
|
78 |
"config_eb_labels_col": "li_eb_label"
|
79 |
})
|
80 |
|
81 |
-
# States for
|
82 |
chat_histories_st = gr.State({})
|
83 |
current_chat_plot_id_st = gr.State(None)
|
84 |
-
plot_data_for_chatbot_st = gr.State({})
|
85 |
|
86 |
-
#
|
87 |
-
orchestration_raw_results_st = gr.State(None) # Stores
|
88 |
-
key_results_for_selection_st = gr.State([])
|
89 |
-
selected_key_result_ids_st = gr.State([])
|
90 |
|
|
|
91 |
gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
|
92 |
-
|
93 |
-
|
94 |
-
org_urn_display = gr.Textbox(label="URN
|
|
|
|
|
95 |
|
|
|
96 |
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
|
97 |
|
98 |
-
|
99 |
-
|
|
|
|
|
100 |
dashboard_content = display_main_dashboard(new_state)
|
101 |
-
return status_msg, new_state,
|
102 |
|
103 |
-
#
|
104 |
-
analytics_icons = {
|
105 |
-
'bomb': BOMB_ICON, 'explore': EXPLORE_ICON,
|
106 |
-
'formula': FORMULA_ICON, 'active': ACTIVE_ICON
|
107 |
-
}
|
108 |
analytics_tab_instance = AnalyticsTab(
|
109 |
token_state=token_state,
|
110 |
chat_histories_st=chat_histories_st,
|
@@ -121,56 +124,50 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
121 |
)
|
122 |
|
123 |
with gr.Tabs() as tabs:
|
124 |
-
with gr.TabItem("1️⃣ Dashboard
|
125 |
-
|
126 |
-
|
127 |
-
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
|
128 |
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
|
129 |
|
130 |
-
#
|
131 |
analytics_tab_instance.create_tab_ui()
|
132 |
|
133 |
-
#
|
134 |
with gr.TabItem("3️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=AGENTIC_MODULES_LOADED):
|
135 |
-
gr.Markdown("## 🤖 Comprehensive Analysis Report (
|
136 |
-
agentic_pipeline_status_md = gr.Markdown("
|
137 |
-
gr.Markdown("Questo report è generato da un agente AI
|
138 |
-
agentic_report_display_md = gr.Markdown("
|
139 |
if not AGENTIC_MODULES_LOADED:
|
140 |
-
gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")
|
141 |
|
142 |
-
#
|
143 |
with gr.TabItem("4️⃣ Agentic OKRs & Tasks", id="tab_agentic_okrs", visible=AGENTIC_MODULES_LOADED):
|
144 |
-
gr.Markdown("## 🎯 AI Generated OKRs and Actionable Tasks (
|
145 |
-
gr.Markdown("Basato sull'analisi AI
|
146 |
if not AGENTIC_MODULES_LOADED:
|
147 |
-
gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")
|
148 |
with gr.Row():
|
149 |
with gr.Column(scale=1):
|
150 |
-
gr.Markdown("### Suggested Key Results
|
151 |
key_results_cbg = gr.CheckboxGroup(label="Select Key Results", choices=[], value=[], interactive=True)
|
152 |
with gr.Column(scale=3):
|
153 |
gr.Markdown("### Detailed OKRs and Tasks for Selected Key Results")
|
154 |
-
okr_detail_display_md = gr.Markdown("I dettagli OKR appariranno qui dopo
|
155 |
|
|
|
156 |
def update_okr_display_on_selection(selected_kr_unique_ids: list, raw_orchestration_results: dict, all_krs_for_selection: list):
|
157 |
if not raw_orchestration_results or not AGENTIC_MODULES_LOADED:
|
158 |
-
return gr.update(value="Nessun dato
|
159 |
-
|
160 |
-
actionable_okrs_dict = raw_orchestration_results.get("actionable_okrs_and_tasks")
|
161 |
if not actionable_okrs_dict or not isinstance(actionable_okrs_dict.get("okrs"), list):
|
162 |
-
return gr.update(value="Nessun OKR trovato nei
|
163 |
|
164 |
okrs_list = actionable_okrs_dict["okrs"]
|
165 |
-
|
166 |
-
if not all_krs_for_selection or not isinstance(all_krs_for_selection, list) or \
|
167 |
-
not all(isinstance(kr, dict) and 'unique_kr_id' in kr and 'okr_index' in kr and 'kr_index' in kr for kr in all_krs_for_selection):
|
168 |
-
logging.error("all_krs_for_selection is not in the expected format.")
|
169 |
return gr.update(value="Errore interno: formato dati KR non valido.")
|
170 |
|
171 |
-
|
172 |
kr_id_to_indices = {kr_info['unique_kr_id']: (kr_info['okr_index'], kr_info['kr_index']) for kr_info in all_krs_for_selection}
|
173 |
-
|
174 |
selected_krs_by_okr_idx = defaultdict(list)
|
175 |
if selected_kr_unique_ids:
|
176 |
for kr_unique_id in selected_kr_unique_ids:
|
@@ -179,39 +176,26 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
179 |
selected_krs_by_okr_idx[okr_idx].append(kr_idx)
|
180 |
|
181 |
output_md_parts = []
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
if accepted_indices_for_this_okr is not None: # This OKR has some of the selected KRs
|
191 |
-
output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=accepted_indices_for_this_okr, okr_main_index=okr_idx))
|
192 |
-
else: # No KRs selected, show all OKRs with all their KRs
|
193 |
-
output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=None, okr_main_index=okr_idx))
|
194 |
-
|
195 |
-
if not output_md_parts and selected_kr_unique_ids:
|
196 |
-
final_md = "Nessun OKR corrisponde alla selezione corrente o i KR selezionati non hanno task dettagliati."
|
197 |
-
elif not output_md_parts and not selected_kr_unique_ids: # Should be covered by "Nessun OKR generato."
|
198 |
-
final_md = "Nessun OKR generato."
|
199 |
-
else:
|
200 |
-
final_md = "\n\n---\n\n".join(output_md_parts)
|
201 |
return gr.update(value=final_md)
|
202 |
|
203 |
if AGENTIC_MODULES_LOADED:
|
204 |
key_results_cbg.change(
|
205 |
fn=update_okr_display_on_selection,
|
206 |
inputs=[key_results_cbg, orchestration_raw_results_st, key_results_for_selection_st],
|
207 |
-
outputs=[okr_detail_display_md]
|
208 |
-
api_name="update_okr_display_on_selection_module"
|
209 |
)
|
210 |
|
211 |
-
|
212 |
-
# Define the output list for
|
213 |
-
|
214 |
-
agentic_pipeline_outputs_list = [
|
215 |
agentic_report_display_md,
|
216 |
key_results_cbg,
|
217 |
okr_detail_display_md,
|
@@ -220,16 +204,16 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
220 |
key_results_for_selection_st,
|
221 |
agentic_pipeline_status_md
|
222 |
]
|
223 |
-
agentic_pipeline_inputs = [token_state] # Input for the autonomous run
|
224 |
|
225 |
-
#
|
226 |
initial_load_event = org_urn_display.change(
|
227 |
-
fn=
|
228 |
inputs=[url_user_token_display, org_urn_display, token_state],
|
229 |
-
outputs=[status_box, token_state,
|
230 |
show_progress="full"
|
231 |
)
|
232 |
|
|
|
233 |
initial_load_event.then(
|
234 |
fn=analytics_tab_instance._refresh_analytics_graphs_ui,
|
235 |
inputs=[
|
@@ -241,65 +225,23 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
241 |
],
|
242 |
outputs=analytics_tab_instance.graph_refresh_outputs_list,
|
243 |
show_progress="full"
|
|
|
244 |
).then(
|
245 |
-
fn=
|
246 |
-
inputs=[token_state, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st],
|
247 |
-
outputs=agentic_pipeline_outputs_list,
|
248 |
-
show_progress="minimal" # Use minimal for generators that yield status
|
249 |
-
)
|
250 |
-
|
251 |
-
sync_event_part1 = sync_data_btn.click(
|
252 |
-
fn=sync_all_linkedin_data_orchestrator,
|
253 |
-
inputs=[token_state],
|
254 |
-
outputs=[sync_status_html_output, token_state],
|
255 |
-
show_progress="full"
|
256 |
-
)
|
257 |
-
sync_event_part2 = sync_event_part1.then(
|
258 |
-
fn=process_and_store_bubble_token,
|
259 |
-
inputs=[url_user_token_display, org_urn_display, token_state],
|
260 |
-
outputs=[status_box, token_state, sync_data_btn],
|
261 |
-
show_progress=False
|
262 |
-
)
|
263 |
-
sync_event_part2.then(
|
264 |
-
fn=run_agentic_pipeline_autonomously, # Generator function
|
265 |
inputs=[token_state, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st],
|
266 |
-
outputs=
|
267 |
show_progress="minimal"
|
268 |
)
|
269 |
-
sync_event_part3 = sync_event_part2.then(
|
270 |
-
fn=display_main_dashboard,
|
271 |
-
inputs=[token_state],
|
272 |
-
outputs=[dashboard_display_html],
|
273 |
-
show_progress=False
|
274 |
-
)
|
275 |
-
sync_event_graphs_after_sync = sync_event_part3.then(
|
276 |
-
fn=analytics_tab_instance._refresh_analytics_graphs_ui,
|
277 |
-
inputs=[
|
278 |
-
token_state,
|
279 |
-
analytics_tab_instance.date_filter_selector,
|
280 |
-
analytics_tab_instance.custom_start_date_picker,
|
281 |
-
analytics_tab_instance.custom_end_date_picker,
|
282 |
-
chat_histories_st
|
283 |
-
],
|
284 |
-
outputs=analytics_tab_instance.graph_refresh_outputs_list,
|
285 |
-
show_progress="full"
|
286 |
-
)
|
287 |
|
288 |
if __name__ == "__main__":
|
|
|
289 |
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
|
290 |
-
logging.warning(f"
|
291 |
if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
|
292 |
-
logging.warning("
|
293 |
if not AGENTIC_MODULES_LOADED:
|
294 |
-
logging.warning("CRITICAL: Agentic pipeline modules failed to load. Tabs 3 and 4
|
295 |
-
if not os.environ.get("GEMINI_API_KEY"):
|
296 |
-
logging.warning("
|
297 |
-
|
298 |
-
try:
|
299 |
-
logging.info(f"Gradio version: {gr.__version__}")
|
300 |
-
logging.info(f"Pandas version: {pd.__version__}")
|
301 |
-
logging.info(f"Matplotlib version: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
|
302 |
-
except Exception as e:
|
303 |
-
logging.warning(f"Could not log library versions: {e}")
|
304 |
|
305 |
app.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)), debug=True)
|
|
|
3 |
import pandas as pd
|
4 |
import os
|
5 |
import logging
|
6 |
+
from collections import defaultdict
|
7 |
import matplotlib
|
8 |
matplotlib.use('Agg') # Set backend for Matplotlib
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# --- Module Imports ---
|
11 |
from utils.gradio_utils import get_url_user_token
|
12 |
|
13 |
# Functions from newly created/refactored modules
|
14 |
from config import (
|
15 |
+
PLOT_ID_TO_FORMULA_KEY_MAP,
|
16 |
+
LINKEDIN_CLIENT_ID_ENV_VAR,
|
17 |
+
BUBBLE_APP_NAME_ENV_VAR,
|
18 |
+
BUBBLE_API_KEY_PRIVATE_ENV_VAR,
|
19 |
+
BUBBLE_API_ENDPOINT_ENV_VAR
|
20 |
)
|
21 |
+
# UPDATED: Using the new data loading function from the refactored state manager
|
22 |
+
from services.state_manager import load_data_from_bubble
|
23 |
from ui.ui_generators import (
|
24 |
display_main_dashboard,
|
25 |
+
build_analytics_tab_plot_area,
|
26 |
+
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
|
27 |
)
|
28 |
+
from ui.analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot
|
29 |
+
from formulas import PLOT_FORMULAS
|
30 |
|
31 |
+
# --- CHATBOT MODULE IMPORTS ---
|
32 |
+
from features.chatbot.chatbot_prompts import get_initial_insight_prompt_and_suggestions
|
33 |
+
from features.chatbot.chatbot_handler import generate_llm_response
|
34 |
|
35 |
+
# --- AGENTIC PIPELINE (DISPLAY ONLY) IMPORTS ---
|
36 |
try:
|
37 |
+
# UPDATED: Using the new display function to show pre-computed results
|
38 |
+
from run_agentic_pipeline import load_and_display_agentic_results
|
39 |
+
from ui.insights_ui_generator import format_single_okr_for_display
|
|
|
40 |
AGENTIC_MODULES_LOADED = True
|
41 |
+
except ImportError as e:
|
42 |
+
logging.error(f"Could not import agentic pipeline display modules: {e}. Tabs 3 and 4 will be disabled.")
|
43 |
AGENTIC_MODULES_LOADED = False
|
44 |
+
# Placeholder for the new function name if imports fail
|
45 |
+
def load_and_display_agentic_results(*args, **kwargs):
|
46 |
+
# This tuple matches the expected number of outputs for the event handler
|
47 |
+
return "Modules not loaded.", "Modules not loaded.", "Modules not loaded.", None, [], [], "Error"
|
48 |
+
def format_single_okr_for_display(okr_data, **kwargs):
|
49 |
+
return "Agentic modules not loaded. OKR display unavailable."
|
50 |
|
51 |
+
# --- ANALYTICS TAB MODULE IMPORT ---
|
52 |
+
from services.analytics_tab_module import AnalyticsTab
|
|
|
53 |
|
54 |
# Configure logging
|
55 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
|
56 |
|
57 |
# API Key Setup
|
|
|
58 |
user_provided_api_key = os.environ.get("GEMINI_API_KEY")
|
59 |
if user_provided_api_key:
|
60 |
os.environ["GOOGLE_API_KEY"] = user_provided_api_key
|
|
|
64 |
|
65 |
|
66 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
67 |
+
title="LinkedIn Organization Dashboard") as app:
|
68 |
+
# --- STATE MANAGEMENT ---
|
69 |
token_state = gr.State(value={
|
70 |
"token": None, "client_id": None, "org_urn": None,
|
71 |
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
|
72 |
+
"bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(),
|
73 |
+
"bubble_agentic_analysis_data": pd.DataFrame(), # To store agentic results from Bubble
|
74 |
+
"url_user_token_temp_storage": None,
|
75 |
+
# Config values remain useful for display components
|
76 |
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
|
77 |
"config_date_col_followers": "date", "config_media_type_col": "media_type",
|
78 |
"config_eb_labels_col": "li_eb_label"
|
79 |
})
|
80 |
|
81 |
+
# States for analytics tab chatbot
|
82 |
chat_histories_st = gr.State({})
|
83 |
current_chat_plot_id_st = gr.State(None)
|
84 |
+
plot_data_for_chatbot_st = gr.State({})
|
85 |
|
86 |
+
# States for agentic results display
|
87 |
+
orchestration_raw_results_st = gr.State(None) # Stores reconstructed report/OKR dict from Bubble
|
88 |
+
key_results_for_selection_st = gr.State([]) # Stores list of dicts for KR selection
|
89 |
+
selected_key_result_ids_st = gr.State([]) # Stores unique_kr_ids selected by the user
|
90 |
|
91 |
+
# --- UI LAYOUT ---
|
92 |
gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
|
93 |
+
# Hidden components to receive URL parameters
|
94 |
+
url_user_token_display = gr.Textbox(label="User Token (Hidden)", interactive=False, visible=False)
|
95 |
+
org_urn_display = gr.Textbox(label="Org URN (Hidden)", interactive=False, visible=False)
|
96 |
+
# General status display
|
97 |
+
status_box = gr.Textbox(label="Status", interactive=False, value="Initializing...")
|
98 |
|
99 |
+
# Load URL parameters on page load
|
100 |
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
|
101 |
|
102 |
+
# UPDATED: Simplified initial data loading sequence
|
103 |
+
def initial_data_load_sequence(url_token, org_urn_val, current_state):
|
104 |
+
# This function now only loads data from Bubble and updates the main dashboard display
|
105 |
+
status_msg, new_state = load_data_from_bubble(url_token, org_urn_val, current_state)
|
106 |
dashboard_content = display_main_dashboard(new_state)
|
107 |
+
return status_msg, new_state, dashboard_content
|
108 |
|
109 |
+
# Instantiate the AnalyticsTab module (no changes needed here)
|
110 |
+
analytics_icons = {'bomb': BOMB_ICON, 'explore': EXPLORE_ICON, 'formula': FORMULA_ICON, 'active': ACTIVE_ICON}
|
|
|
|
|
|
|
111 |
analytics_tab_instance = AnalyticsTab(
|
112 |
token_state=token_state,
|
113 |
chat_histories_st=chat_histories_st,
|
|
|
124 |
)
|
125 |
|
126 |
with gr.Tabs() as tabs:
|
127 |
+
with gr.TabItem("1️⃣ Dashboard", id="tab_dashboard"):
|
128 |
+
# REMOVED: Sync button and related UI components. This tab is now just for the main dashboard.
|
129 |
+
gr.Markdown("I dati visualizzati in questo pannello sono caricati direttamente da Bubble.io.")
|
|
|
130 |
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
|
131 |
|
132 |
+
# Use the AnalyticsTab module to create Tab 2
|
133 |
analytics_tab_instance.create_tab_ui()
|
134 |
|
135 |
+
# Tab 3: Agentic Analysis Report
|
136 |
with gr.TabItem("3️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=AGENTIC_MODULES_LOADED):
|
137 |
+
gr.Markdown("## 🤖 Comprehensive Analysis Report (from Bubble.io)")
|
138 |
+
agentic_pipeline_status_md = gr.Markdown("Status: Loading report data...", visible=True)
|
139 |
+
gr.Markdown("Questo report è stato pre-generato da un agente AI e caricato da Bubble.io.")
|
140 |
+
agentic_report_display_md = gr.Markdown("The AI-generated report will be displayed here once loaded.")
|
141 |
if not AGENTIC_MODULES_LOADED:
|
142 |
+
gr.Markdown("🔴 **Error:** Agentic pipeline display modules could not be loaded. This tab is disabled.")
|
143 |
|
144 |
+
# Tab 4: Agentic OKRs & Tasks
|
145 |
with gr.TabItem("4️⃣ Agentic OKRs & Tasks", id="tab_agentic_okrs", visible=AGENTIC_MODULES_LOADED):
|
146 |
+
gr.Markdown("## 🎯 AI Generated OKRs and Actionable Tasks (from Bubble.io)")
|
147 |
+
gr.Markdown("Basato sull'analisi AI pre-generata, l'agente ha proposto i seguenti OKR. Seleziona i Key Results per dettagli.")
|
148 |
if not AGENTIC_MODULES_LOADED:
|
149 |
+
gr.Markdown("🔴 **Error:** Agentic pipeline display modules could not be loaded. This tab is disabled.")
|
150 |
with gr.Row():
|
151 |
with gr.Column(scale=1):
|
152 |
+
gr.Markdown("### Suggested Key Results")
|
153 |
key_results_cbg = gr.CheckboxGroup(label="Select Key Results", choices=[], value=[], interactive=True)
|
154 |
with gr.Column(scale=3):
|
155 |
gr.Markdown("### Detailed OKRs and Tasks for Selected Key Results")
|
156 |
+
okr_detail_display_md = gr.Markdown("I dettagli OKR appariranno qui dopo il caricamento dei dati.")
|
157 |
|
158 |
+
# This handler logic for the CheckboxGroup remains the same, as it operates on loaded data.
|
159 |
def update_okr_display_on_selection(selected_kr_unique_ids: list, raw_orchestration_results: dict, all_krs_for_selection: list):
|
160 |
if not raw_orchestration_results or not AGENTIC_MODULES_LOADED:
|
161 |
+
return gr.update(value="Nessun dato di analisi caricato o moduli non disponibili.")
|
162 |
+
actionable_okrs_dict = raw_orchestration_results.get("actionable_okrs")
|
|
|
163 |
if not actionable_okrs_dict or not isinstance(actionable_okrs_dict.get("okrs"), list):
|
164 |
+
return gr.update(value="Nessun OKR trovato nei dati di analisi caricati.")
|
165 |
|
166 |
okrs_list = actionable_okrs_dict["okrs"]
|
167 |
+
if not all_krs_for_selection or not isinstance(all_krs_for_selection, list):
|
|
|
|
|
|
|
168 |
return gr.update(value="Errore interno: formato dati KR non valido.")
|
169 |
|
|
|
170 |
kr_id_to_indices = {kr_info['unique_kr_id']: (kr_info['okr_index'], kr_info['kr_index']) for kr_info in all_krs_for_selection}
|
|
|
171 |
selected_krs_by_okr_idx = defaultdict(list)
|
172 |
if selected_kr_unique_ids:
|
173 |
for kr_unique_id in selected_kr_unique_ids:
|
|
|
176 |
selected_krs_by_okr_idx[okr_idx].append(kr_idx)
|
177 |
|
178 |
output_md_parts = []
|
179 |
+
for okr_idx, okr_data in enumerate(okrs_list):
|
180 |
+
if not selected_kr_unique_ids: # Show all if nothing is selected
|
181 |
+
output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=None, okr_main_index=okr_idx))
|
182 |
+
elif okr_idx in selected_krs_by_okr_idx: # Show only OKRs that have a selected KR
|
183 |
+
accepted_indices = selected_krs_by_okr_idx.get(okr_idx)
|
184 |
+
output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=accepted_indices, okr_main_index=okr_idx))
|
185 |
+
|
186 |
+
final_md = "\n\n---\n\n".join(output_md_parts) if output_md_parts else "Nessun OKR corrisponde alla selezione corrente."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
return gr.update(value=final_md)
|
188 |
|
189 |
if AGENTIC_MODULES_LOADED:
|
190 |
key_results_cbg.change(
|
191 |
fn=update_okr_display_on_selection,
|
192 |
inputs=[key_results_cbg, orchestration_raw_results_st, key_results_for_selection_st],
|
193 |
+
outputs=[okr_detail_display_md]
|
|
|
194 |
)
|
195 |
|
196 |
+
# --- EVENT HANDLING (SIMPLIFIED) ---
|
197 |
+
# Define the output list for loading agentic results
|
198 |
+
agentic_display_outputs = [
|
|
|
199 |
agentic_report_display_md,
|
200 |
key_results_cbg,
|
201 |
okr_detail_display_md,
|
|
|
204 |
key_results_for_selection_st,
|
205 |
agentic_pipeline_status_md
|
206 |
]
|
|
|
207 |
|
208 |
+
# This is the main event chain that runs when the app loads
|
209 |
initial_load_event = org_urn_display.change(
|
210 |
+
fn=initial_data_load_sequence,
|
211 |
inputs=[url_user_token_display, org_urn_display, token_state],
|
212 |
+
outputs=[status_box, token_state, dashboard_display_html],
|
213 |
show_progress="full"
|
214 |
)
|
215 |
|
216 |
+
# After initial data is loaded, refresh the analytics graphs
|
217 |
initial_load_event.then(
|
218 |
fn=analytics_tab_instance._refresh_analytics_graphs_ui,
|
219 |
inputs=[
|
|
|
225 |
],
|
226 |
outputs=analytics_tab_instance.graph_refresh_outputs_list,
|
227 |
show_progress="full"
|
228 |
+
# Then, load and display the pre-computed agentic results
|
229 |
).then(
|
230 |
+
fn=load_and_display_agentic_results, # UPDATED function call
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
inputs=[token_state, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st],
|
232 |
+
outputs=agentic_display_outputs,
|
233 |
show_progress="minimal"
|
234 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
if __name__ == "__main__":
|
237 |
+
# Environment variable checks remain important
|
238 |
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
|
239 |
+
logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' is not set.")
|
240 |
if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
|
241 |
+
logging.warning("WARNING: One or more Bubble environment variables are not set.")
|
242 |
if not AGENTIC_MODULES_LOADED:
|
243 |
+
logging.warning("CRITICAL: Agentic pipeline display modules failed to load. Tabs 3 and 4 will be non-functional.")
|
244 |
+
if not os.environ.get("GEMINI_API_KEY"):
|
245 |
+
logging.warning("WARNING: 'GEMINI_API_KEY' is not set. This may be needed for chatbot features.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
app.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)), debug=True)
|