Spaces:
Running
Running
# insights_ui_generator.py | |
import logging | |
from typing import Dict, Any, List, Optional | |
# Configure logger for this module. Assumes logging is configured in app.py or main entry point. | |
logger = logging.getLogger(__name__) | |
def format_report_to_markdown(report_string: Optional[str]) -> str: | |
""" | |
Formats the comprehensive analysis report string into a displayable Markdown format. | |
This can be enhanced to add more structure if the report has implicit sections. | |
Args: | |
report_string: The raw text report from the orchestrator. | |
Returns: | |
A Markdown formatted string. | |
""" | |
if not report_string or not report_string.strip(): | |
return "## Comprehensive Analysis Report\n\n*No analysis report was generated, or an error occurred during its generation.*" | |
# Simple formatting for now. Could be enhanced (e.g., looking for patterns like "Section X:" to make them H3) | |
# Ensure paragraphs are separated. Replace multiple newlines with double newlines for Markdown paragraphs. | |
# report_string_cleaned = re.sub(r'\n\s*\n', '\n\n', report_string.strip()) | |
formatted_report = f"## Comprehensive Analysis Report\n\n{report_string.strip()}" | |
# You might add more sophisticated parsing here if your LLM output for the report | |
# has a consistent structure that can be converted to richer Markdown. | |
return formatted_report | |
def extract_key_results_for_selection( | |
actionable_okrs_and_tasks_dict: Optional[Dict[str, Any]] | |
) -> List[Dict[str, Any]]: | |
""" | |
Extracts Key Results from the OKR structure for UI selection in Gradio. | |
Each Key Result is given a unique ID for state management in the Gradio app. | |
Args: | |
actionable_okrs_and_tasks_dict: The dictionary representation of TaskExtractionOutput, | |
typically `orchestration_results["actionable_okrs_and_tasks"]`. | |
Expected structure: {'okrs': List[OKR_dict], ...} | |
Returns: | |
A list of dictionaries, where each dictionary represents a Key Result: | |
{'okr_index': int, 'kr_index': int, 'okr_objective': str, | |
'kr_description': str, 'unique_kr_id': str} | |
""" | |
key_results_for_ui: List[Dict[str, Any]] = [] | |
if not actionable_okrs_and_tasks_dict or not isinstance(actionable_okrs_and_tasks_dict.get('okrs'), list): | |
logger.warning("No 'okrs' list found or it's not a list in the provided task extraction output.") | |
return key_results_for_ui | |
okrs_list = actionable_okrs_and_tasks_dict['okrs'] | |
for okr_idx, okr_data in enumerate(okrs_list): | |
if not isinstance(okr_data, dict): | |
logger.warning(f"OKR item at index {okr_idx} is not a dictionary, skipping.") | |
continue | |
okr_objective = okr_data.get('objective_description', f"Objective {okr_idx + 1} (Unnamed)") | |
key_results_list = okr_data.get('key_results', []) | |
if not isinstance(key_results_list, list): | |
logger.warning(f"Expected 'key_results' in OKR '{okr_objective}' (index {okr_idx}) to be a list, got {type(key_results_list)}.") | |
continue | |
for kr_idx, kr_data in enumerate(key_results_list): | |
if not isinstance(kr_data, dict): | |
logger.warning(f"Key Result item for OKR '{okr_objective}' at KR index {kr_idx} is not a dictionary, skipping.") | |
continue | |
kr_description = kr_data.get('key_result_description', f"Key Result {kr_idx + 1} (No description provided)") | |
key_results_for_ui.append({ | |
'okr_index': okr_idx, # Index of the parent OKR in the original list | |
'kr_index': kr_idx, # Index of this KR within its parent OKR | |
'okr_objective': okr_objective, | |
'kr_description': kr_description, | |
'unique_kr_id': f"okr{okr_idx}_kr{kr_idx}" # Unique ID for Gradio component linking | |
}) | |
if not key_results_for_ui: | |
logger.info("No Key Results were extracted for selection from the OKR data.") | |
return key_results_for_ui | |
def format_single_okr_for_display( | |
okr_data: Dict[str, Any], | |
accepted_kr_indices: Optional[List[int]] = None, | |
okr_main_index: Optional[int] = None # For titling if needed | |
) -> str: | |
""" | |
Formats a single complete OKR object (with its Key Results and Tasks) into a | |
detailed Markdown string for display. Optionally filters to show only accepted Key Results. | |
Args: | |
okr_data: A dictionary representing a single OKR from the TaskExtractionOutput. | |
accepted_kr_indices: Optional list of indices of Key Results within this OKR | |
that were accepted by the user. If None, all KRs are displayed. | |
okr_main_index: Optional index of this OKR in the main list, for titling. | |
Returns: | |
A Markdown formatted string representing the OKR. | |
""" | |
if not okr_data or not isinstance(okr_data, dict): | |
return "*Invalid OKR data provided for display.*\n" | |
md_parts = [] | |
objective_title_num = f" {okr_main_index + 1}" if okr_main_index is not None else "" | |
objective = okr_data.get('objective_description', f"Unnamed Objective{objective_title_num}") | |
objective_timeline = okr_data.get('objective_timeline', '') | |
objective_owner = okr_data.get('objective_owner', 'N/A') | |
md_parts.append(f"### Objective{objective_title_num}: {objective}") | |
if objective_timeline: | |
md_parts.append(f"**Overall Timeline:** {objective_timeline}") | |
if objective_owner and objective_owner != 'N/A': | |
md_parts.append(f"**Overall Owner:** {objective_owner}") | |
md_parts.append("\n---") | |
key_results_list = okr_data.get('key_results', []) | |
displayed_kr_count = 0 | |
if not isinstance(key_results_list, list) or not key_results_list: | |
md_parts.append("\n*No Key Results defined for this objective.*") | |
else: | |
for kr_idx, kr_data in enumerate(key_results_list): | |
if accepted_kr_indices is not None and kr_idx not in accepted_kr_indices: | |
continue # Skip this KR if a filter is applied and it's not in the accepted list | |
displayed_kr_count +=1 | |
if not isinstance(kr_data, dict): | |
md_parts.append(f"\n**Key Result {kr_idx+1}:** *Invalid data format for this Key Result.*") | |
continue | |
kr_desc = kr_data.get('key_result_description') or kr_data.get('description') or f"Key Result {kr_idx+1} (No description)" | |
target_metric = kr_data.get('target_metric') | |
target_value = kr_data.get('target_value') | |
kr_data_subj = kr_data.get('data_subject') | |
kr_type = kr_data.get('key_result_type') | |
md_parts.append(f"\n#### Key Result {displayed_kr_count} (Original Index: {kr_idx+1}): {kr_desc}") | |
if target_metric and target_value: | |
md_parts.append(f" - **Target:** Measure `{target_metric}` to achieve/reach `{target_value}`") | |
if kr_type and kr_data_subj: | |
md_parts.append(f" **Key result type**: {kr_type}, for **data subject** {kr_data_subj}") | |
tasks_list = kr_data.get('tasks', []) | |
if tasks_list and isinstance(tasks_list, list): | |
md_parts.append(" **Associated Tasks:**") | |
for task_idx, task_data in enumerate(tasks_list): | |
if not isinstance(task_data, dict): | |
md_parts.append(f" - Task {task_idx+1}: *Invalid data format for this task.*") | |
continue | |
task_desc = task_data.get('task_description') or task_data.get('description') or f"Task {task_idx+1} (No description)" | |
task_cat = task_data.get('task_category') or task_data.get('category') or 'N/A' | |
task_effort = task_data.get('effort', 'N/A') | |
task_timeline = task_data.get('timeline', 'N/A') | |
task_priority = task_data.get('priority', 'N/A') | |
task_responsible = task_data.get('responsible_party', 'N/A') | |
task_type = task_data.get('task_type', 'N/A') | |
data_subject_val = task_data.get('data_subject') | |
data_subject_str = f", Data Subject: `{data_subject_val}`" if data_subject_val and task_type == 'tracking' else "" | |
md_parts.append(f" - **{task_idx+1}. {task_desc}**") | |
md_parts.append(f" - *Category:* {task_cat} | *Type:* {task_type}{data_subject_str}") | |
md_parts.append(f" - *Priority:* **{task_priority}** | *Effort:* {task_effort} | *Timeline:* {task_timeline}") | |
md_parts.append(f" - *Responsible:* {task_responsible}") | |
obj_deliv = task_data.get('objective_deliverable') | |
if obj_deliv: md_parts.append(f" - *Objective/Deliverable:* {obj_deliv}") | |
success_crit = task_data.get('success_criteria_metrics') | |
if success_crit: md_parts.append(f" - *Success Metrics:* {success_crit}") | |
why_prop = task_data.get('why_proposed') | |
if why_prop: md_parts.append(f" - *Rationale:* {why_prop}") | |
priority_just = task_data.get('priority_justification') | |
if priority_just: md_parts.append(f" - *Priority Justification:* {priority_just}") | |
dependencies = task_data.get('dependencies_prerequisites') | |
if dependencies: md_parts.append(f" - *Dependencies:* {dependencies}") | |
md_parts.append("") # Extra newline for spacing between tasks details | |
else: | |
md_parts.append(" *No tasks defined for this Key Result.*") | |
md_parts.append("\n---\n") # Separator between Key Results | |
if displayed_kr_count == 0 and accepted_kr_indices is not None: | |
md_parts.append("\n*No Key Results matching the 'accepted' filter for this objective.*") | |
return "\n".join(md_parts) | |