LinkedinMonitor / run_agentic_pipeline.py
GuglielmoTor's picture
Update run_agentic_pipeline.py
fb78a2f verified
# run_agentic_pipeline.py
import asyncio
import os
import json
import logging
from datetime import datetime
import pandas as pd
from typing import Dict, Any, Optional
import gradio as gr
# Assuming this script is at the same level as 'app.py' and 'insight_and_tasks/' is a subfolder
# If 'insight_and_tasks' is not in python path, you might need to adjust sys.path
# For example, if insight_and_tasks is a sibling of the dir containing this file:
# import sys
# script_dir = os.path.dirname(os.path.abspath(__file__))
# project_root = os.path.dirname(script_dir) # Or navigate to the correct root
# sys.path.insert(0, project_root)
os.environ["GOOGLE_GENAI_USE_VERTEXAI"] = "False"
GOOGLE_API_KEY = os.environ.get("GEMINI_API_KEY")
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
# Imports from your project structure
from features.insight_and_tasks.orchestrators.linkedin_analytics_orchestrator import EnhancedLinkedInAnalyticsOrchestrator
# setup_logging might be called in app.py, if not, call it here or ensure it's called once.
# from insight_and_tasks.utils.logging_config import setup_logging
from data_processing.analytics_data_processing import prepare_filtered_analytics_data
# Placeholder for UI generator import - to be created later
# from .insights_ui_generator import format_orchestration_results_for_ui
try:
from ui.insights_ui_generator import (
format_report_to_markdown,
extract_key_results_for_selection,
format_single_okr_for_display
)
AGENTIC_MODULES_LOADED = True
except ImportError as e:
logging.error(f"Could not import agentic pipeline modules: {e}. Tabs 3 and 4 will be disabled.")
AGENTIC_MODULES_LOADED = False
async def run_full_analytics_orchestration(*args, **kwargs): return None # Placeholder
def format_report_to_markdown(report_string): return "Agentic modules not loaded. Report unavailable." # Placeholder
def extract_key_results_for_selection(okrs_dict): return [] # Placeholder
def format_single_okr_for_display(okr_data, **kwargs): return "Agentic modules not loaded. OKR display unavailable." # Placeholder
from services.report_data_handler import save_report_results, save_actionable_okrs, fetch_and_reconstruct_data_from_bubble
logger = logging.getLogger(__name__)
async def run_full_analytics_orchestration(
token_state: Dict[str, Any],
date_filter_selection: str,
custom_start_date: Optional[datetime],
custom_end_date: Optional[datetime]
) -> Optional[Dict[str, Any]]:
"""
Runs the full analytics pipeline using data from token_state and date filters,
and returns the raw orchestration results.
Args:
token_state: Gradio token_state containing raw data and config.
date_filter_selection: String for date filter type.
custom_start_date: Optional custom start date.
custom_end_date: Optional custom end date.
Returns:
A dictionary containing the results from the analytics orchestrator,
or None if a critical error occurs.
"""
if not GOOGLE_API_KEY:
logger.critical("GOOGLE_API_KEY is not set. Analytics pipeline cannot run.")
return None
logger.info("Starting full analytics orchestration process...")
# 1. Prepare and filter data
try:
(
filtered_posts_df,
filtered_mentions_df,
_date_filtered_follower_stats_df, # This might be used if FollowerAgent specifically needs pre-filtered time series
raw_follower_stats_df, # FollowerAgent typically processes raw historical for some metrics
_start_dt, # Filtered start date, for logging or context if needed
_end_dt # Filtered end date
) = prepare_filtered_analytics_data(
token_state, date_filter_selection, custom_start_date, custom_end_date
)
logger.info(f"Data prepared: Posts({len(filtered_posts_df)}), Mentions({len(filtered_mentions_df)}), FollowerStatsRaw({len(raw_follower_stats_df)})")
except Exception as e:
logger.error(f"Error during data preparation: {e}", exc_info=True)
return None
# Check if essential dataframes are empty after filtering, which might make analysis trivial or erroneous
if filtered_posts_df.empty and filtered_mentions_df.empty and raw_follower_stats_df.empty:
logger.warning("All essential DataFrames are empty after filtering. Orchestration might yield limited results.")
# Depending on requirements, you might return a specific message or empty results structure.
# 2. Initialize and run the orchestrator
try:
# You can pass a specific model name or let the orchestrator use its default
llm_model_for_run = "gemini-2.5-flash-preview-05-20" #token_state.get("config_llm_model_override") # Example: if you store this in token_state
orchestrator = EnhancedLinkedInAnalyticsOrchestrator(
api_key=GOOGLE_API_KEY,
llm_model_name=llm_model_for_run, # Pass None to use orchestrator's default
current_date_for_tasks=datetime.utcnow().date()
)
logger.info("Orchestrator initialized. Generating full analysis and tasks...")
# The orchestrator expects the primary follower stats DF to be the one it can process for
# time-series ('follower_gains_monthly') and demographics.
# The `raw_follower_stats_df` is usually better for this, as FollowerAgent does its own processing.
orchestration_results = await orchestrator.generate_full_analysis_and_tasks(
follower_stats_df=raw_follower_stats_df, # Pass the full history for followers
post_df=filtered_posts_df,
mentions_df=filtered_mentions_df
)
logger.info("Orchestration process completed.")
return orchestration_results
except Exception as e:
logger.critical(f"Critical error during analytics orchestration: {e}", exc_info=True)
return None
async def run_agentic_pipeline_autonomously(current_token_state_val, orchestration_raw_results_st,selected_key_result_ids_st, key_results_for_selection_st):
logging.info(f"Agentic pipeline check triggered for token_state update. Current token: {'Set' if current_token_state_val.get('token') else 'Not Set'}")
# Initial state before pipeline runs or if skipped
initial_yield = (
gr.update(value="Pipeline AI: In attesa dei dati necessari..."), # agentic_report_display_md
gr.update(choices=[], value=[], interactive=False), # key_results_cbg
gr.update(value="Pipeline AI: In attesa dei dati necessari..."), # okr_detail_display_md
orchestration_raw_results_st, # Preserve current raw results
selected_key_result_ids_st, # Preserve current selection
key_results_for_selection_st, # Preserve current options
"Pipeline AI: In attesa dei dati..." # agentic_pipeline_status_md
)
if not current_token_state_val or not current_token_state_val.get("token"):
logging.info("Agentic pipeline: Token not available in token_state. Skipping.")
yield initial_yield
return
logging.info("Agentic pipeline starting autonomously with 'Sempre' filter.")
# Update status to indicate processing
yield (
gr.update(value="Analisi AI (Sempre) in corso..."),
gr.update(choices=[], value=[], interactive=False), # Keep CBG disabled during run
gr.update(value="Dettagli OKR (Sempre) in corso di generazione..."),
orchestration_raw_results_st, # Preserve
selected_key_result_ids_st, # Preserve
key_results_for_selection_st, # Preserve
"Esecuzione pipeline AI (Sempre)..."
)
if not AGENTIC_MODULES_LOADED:
logging.warning("Agentic modules not loaded. Skipping autonomous pipeline.")
yield (
gr.update(value="Moduli AI non caricati. Report non disponibile."),
gr.update(choices=[], value=[], interactive=False),
gr.update(value="Moduli AI non caricati. OKR non disponibili."),
None, [], [], "Pipeline AI: Moduli non caricati."
)
return
if not current_token_state_val.get("agentic_pipeline_should_run_now", False):
logging.info("Fetching existing data from Bubble as pipeline run is not required.")
report_df = current_token_state_val.get('bubble_agentic_analysis_data')
# Call the new function to get reconstructed data
retrieved_data = fetch_and_reconstruct_data_from_bubble(report_df)
if not retrieved_data:
logging.warning(f"No data found in Bubble for org_urn {org_urn}. Informing user.")
yield (
gr.update(value="Nessun dato di analisi precedente trovato in Bubble."),
gr.update(choices=[], value=[], interactive=False),
gr.update(value="Eseguire la pipeline per generare un nuovo report."),
None, [], [], "Pipeline AI: Dati non disponibili"
)
return
# If data is found, format it for the UI
report_str = retrieved_data.get('report_str')
actionable_okrs = retrieved_data.get('actionable_okrs')
agentic_report_md_update = gr.update(value=format_report_to_markdown(report_str))
krs_for_ui_selection_list = extract_key_results_for_selection(actionable_okrs)
kr_choices_for_cbg = [(kr['kr_description'], kr['unique_kr_id']) for kr in krs_for_ui_selection_list]
key_results_cbg_update = gr.update(choices=kr_choices_for_cbg, value=[], interactive=True)
all_okrs_md_parts = []
if actionable_okrs and isinstance(actionable_okrs.get("okrs"), list):
for okr_idx, okr_item in enumerate(actionable_okrs["okrs"]):
all_okrs_md_parts.append(format_single_okr_for_display(okr_item, accepted_kr_indices=None, okr_main_index=okr_idx))
if not all_okrs_md_parts:
okr_detail_display_md_update = gr.update(value="Nessun OKR trovato per il report più recente.")
else:
okr_detail_display_md_update = gr.update(value="\n\n---\n\n".join(all_okrs_md_parts))
# Yield the updates for the Gradio interface
yield (
agentic_report_md_update,
key_results_cbg_update,
okr_detail_display_md_update,
retrieved_data, # Store full retrieved data in state
[], # Reset selected KRs state
krs_for_ui_selection_list, # Update state with list of KR dicts
"Pipeline AI: Dati caricati da Bubble"
)
return
try:
# Parameters for 'Sempre' filter for the agentic pipeline
date_filter_val_agentic = "Sempre"
custom_start_val_agentic = None
custom_end_val_agentic = None
orchestration_output = await run_full_analytics_orchestration(
current_token_state_val,
date_filter_val_agentic,
custom_start_val_agentic,
custom_end_val_agentic
)
agentic_status_text = "Pipeline AI (Sempre) completata."
logging.info(f"Autonomous agentic pipeline finished. Output keys: {orchestration_output.keys() if orchestration_output else 'None'}")
if orchestration_output:
orchestration_results_update = orchestration_output # Store full results in state
report_str = orchestration_output.get('comprehensive_analysis_report', "Nessun report dettagliato fornito.")
agentic_report_md_update = gr.update(value=format_report_to_markdown(report_str))
quarter = orchestration_output.get('quarter', "quarter non disponibile")
year = orchestration_output.get('year', "year non disponibile")
org_urn = current_token_state_val.get('org_urn')
try:
report_id = save_report_results(org_urn=org_urn, report_markdown=report_str, quarter=quarter, year=year, report_type='Quarter')
except Exception as e:
logging.error(f"error saving report {e}")
actionable_okrs = orchestration_output.get('actionable_okrs_and_tasks') # This is the dict containing 'okrs' list
try:
save_actionable_okrs(org_urn, actionable_okrs, report_id)
except Exception as e:
logging.error(f"error saving report {e}")
krs_for_ui_selection_list = extract_key_results_for_selection(actionable_okrs) # Expects the dict
krs_for_selection_update = krs_for_ui_selection_list # Update state with list of KR dicts
# Choices for CheckboxGroup: list of (label, value) tuples
kr_choices_for_cbg = [(kr['kr_description'], kr['unique_kr_id']) for kr in krs_for_ui_selection_list]
key_results_cbg_update = gr.update(choices=kr_choices_for_cbg, value=[], interactive=True) # Reset selection
# Display all OKRs by default after pipeline run
all_okrs_md_parts = []
if actionable_okrs and isinstance(actionable_okrs.get("okrs"), list):
for okr_idx, okr_item in enumerate(actionable_okrs["okrs"]):
all_okrs_md_parts.append(format_single_okr_for_display(okr_item, accepted_kr_indices=None, okr_main_index=okr_idx))
if not all_okrs_md_parts:
okr_detail_display_md_update = gr.update(value="Nessun OKR generato o trovato (Sempre).")
else:
okr_detail_display_md_update = gr.update(value="\n\n---\n\n".join(all_okrs_md_parts))
selected_krs_update = [] # Reset selected KRs state
else:
agentic_report_md_update = gr.update(value="Nessun report generato dalla pipeline AI (Sempre).")
key_results_cbg_update = gr.update(choices=[], value=[], interactive=False)
okr_detail_display_md_update = gr.update(value="Nessun OKR generato o errore nella pipeline AI (Sempre).")
orchestration_results_update = None
selected_krs_update = []
krs_for_selection_update = []
yield (
agentic_report_md_update,
key_results_cbg_update,
okr_detail_display_md_update,
orchestration_results_update, # state
selected_krs_update, # state
krs_for_selection_update, # state
agentic_status_text
)
except Exception as e:
logging.error(f"Error during autonomous agentic pipeline execution: {e}", exc_info=True)
agentic_status_text = f"Errore pipeline AI (Sempre): {str(e)}"
yield (
gr.update(value=f"Errore generazione report AI (Sempre): {str(e)}"),
gr.update(choices=[], value=[], interactive=False),
gr.update(value=f"Errore generazione OKR AI (Sempre): {str(e)}"),
None, [], [], agentic_status_text # Reset states on error
)