LinkedinMonitor / app.py
GuglielmoTor's picture
Update app.py
eb46c40 verified
raw
history blame
33.7 kB
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
import time # For profiling if needed
# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR
)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
display_main_dashboard,
run_mentions_tab_display,
run_follower_stats_tab_display,
build_analytics_tab_plot_area, # Import the updated UI builder
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON # Import icons
)
# Corrected import for analytics_data_processing
from analytics_data_processing import prepare_filtered_analytics_data
from analytics_plot_generator import (
generate_posts_activity_plot, # Make sure this is available if posts_activity is in map
generate_mentions_activity_plot, generate_mention_sentiment_plot,
generate_followers_count_over_time_plot,
generate_followers_growth_rate_plot,
generate_followers_by_demographics_plot,
generate_engagement_rate_over_time_plot,
generate_reach_over_time_plot,
generate_impressions_over_time_plot,
create_placeholder_plot,
generate_likes_over_time_plot,
generate_clicks_over_time_plot,
generate_shares_over_time_plot,
generate_comments_over_time_plot,
generate_comments_sentiment_breakdown_plot,
generate_post_frequency_plot,
generate_content_format_breakdown_plot,
generate_content_topic_breakdown_plot
)
from formulas import PLOT_FORMULAS # Import the formula descriptions
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# Mapping from plot_configs IDs to PLOT_FORMULAS keys
PLOT_ID_TO_FORMULA_KEY_MAP = {
"posts_activity": "posts_activity", # Example, if you add it back to plot_configs
"mentions_activity": "mentions_activity", # Example, if you add it back
"mention_sentiment": "mention_sentiment", # Example, if you add it back
"followers_count": "followers_count_over_time",
"followers_growth_rate": "followers_growth_rate",
"followers_by_location": "followers_by_demographics",
"followers_by_role": "followers_by_demographics",
"followers_by_industry": "followers_by_demographics",
"followers_by_seniority": "followers_by_demographics",
"engagement_rate": "engagement_rate_over_time",
"reach_over_time": "reach_over_time",
"impressions_over_time": "impressions_over_time",
"likes_over_time": "likes_over_time",
"clicks_over_time": "clicks_over_time",
"shares_over_time": "shares_over_time",
"comments_over_time": "comments_over_time",
"comments_sentiment": "comments_sentiment_breakdown",
"post_frequency_cs": "post_frequency",
"content_format_breakdown_cs": "content_format_breakdown",
"content_topic_breakdown_cs": "content_topic_breakdown",
"mention_analysis_volume": "mentions_activity",
"mention_analysis_sentiment": "mention_sentiment"
}
# --- Analytics Tab: Plot Figure Generation Function ---
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date):
logging.info(f"Updating analytics plot figures. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
# This num_expected_plots should align with the number of gr.Plot components expected as output.
# The plot_configs list has 19 items.
# If generate_posts_activity_plot, generate_mentions_activity_plot, generate_mention_sentiment_plot
# are added back to the main list of plots directly, this number might change.
# For now, it seems the detailed mention plots are re-using figures.
num_expected_plots = 19 # Adjusted to match plot_configs length for clarity in this function's direct output list construction
if not token_state_value or not token_state_value.get("token"):
message = "❌ Access denied. No token. Cannot generate analytics."
logging.warning(message)
placeholder_figs = [create_placeholder_plot(title="Access Denied", message="No token.") for _ in range(num_expected_plots)]
return [message] + placeholder_figs
try:
(filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df,
raw_follower_stats_df,
start_dt_for_msg, end_dt_for_msg) = \
prepare_filtered_analytics_data(
token_state_value, date_filter_option, custom_start_date, custom_end_date
)
except Exception as e:
error_msg = f"❌ Error preparing analytics data: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Data Preparation Error", message=str(e)) for _ in range(num_expected_plots)]
return [error_msg] + placeholder_figs
date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
media_type_col_name = token_state_value.get("config_media_type_col", "media_type")
eb_labels_col_name = token_state_value.get("config_eb_labels_col", "li_eb_label") # Corrected from li_eb_label to li_eb_labels if that's the actual key in formulas
plot_figs = []
try:
# These plots are generated once and potentially re-used if their IDs match later plot_configs
# However, the current plot_configs doesn't list these explicitly at the start,
# but "mention_analysis_volume" and "mention_analysis_sentiment" will use them.
fig_mentions_activity_shared = generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions)
fig_mention_sentiment_shared = generate_mention_sentiment_plot(filtered_mentions_df)
# Order matters here, must match plot_configs
plot_figs.append(generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
plot_figs.append(generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Followers by Location"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Followers by Role"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Followers by Industry"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Followers by Seniority"))
plot_figs.append(generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df, sentiment_column='comment_sentiment'))
plot_figs.append(generate_post_frequency_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=media_type_col_name))
plot_figs.append(generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=eb_labels_col_name)) # Ensure eb_labels_col_name matches key in formulas if different from 'li_eb_labels'
plot_figs.append(fig_mentions_activity_shared) # For "mention_analysis_volume"
plot_figs.append(fig_mention_sentiment_shared) # For "mention_analysis_sentiment"
message = f"πŸ“Š Analytics updated for period: {date_filter_option}"
if date_filter_option == "Custom Range":
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Any"
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Any"
message += f" (From: {s_display} To: {e_display})"
final_plot_figs = []
for i, p_fig in enumerate(plot_figs):
if p_fig is not None and not isinstance(p_fig, str):
final_plot_figs.append(p_fig)
else:
logging.warning(f"Plot figure generation failed or returned unexpected type for slot {i}, using placeholder. Figure: {p_fig}")
final_plot_figs.append(create_placeholder_plot(title="Plot Error", message="Failed to generate this plot figure."))
# Ensure the list has exactly num_expected_plots items.
# This padding should ideally not be needed if plot_figs is constructed correctly to match num_expected_plots.
while len(final_plot_figs) < num_expected_plots:
logging.warning(f"Padding missing plot figure. Expected {num_expected_plots}, got {len(final_plot_figs)}.")
final_plot_figs.append(create_placeholder_plot(title="Missing Plot", message="Plot figure could not be generated."))
return [message] + final_plot_figs[:num_expected_plots] # Ensure correct number of plot figures are returned
except Exception as e:
error_msg = f"❌ Error generating analytics plot figures: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Plot Generation Error", message=str(e)) for _ in range(num_expected_plots)]
return [error_msg] + placeholder_figs
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(),
"fetch_count_for_api": 0, "url_user_token_temp_storage": None,
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
"config_date_col_followers": "date", "config_media_type_col": "media_type",
"config_eb_labels_col": "li_eb_labels" # Ensure this matches the column name used in plot generator and formulas.py
})
gr.Markdown("# πŸš€ LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (Hidden)", interactive=False, visible=False)
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")
org_urn_display = gr.Textbox(label="Organization URN (Hidden)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs() as tabs:
with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("System checks for existing data from Bubble. 'Sync' activates if new data is needed.")
sync_data_btn = gr.Button("πŸ”„ Sync LinkedIn Data", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Sync status...</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Dashboard loading...</p>")
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
with gr.TabItem("2️⃣ Analytics", id="tab_analytics"):
gr.Markdown("## πŸ“ˆ LinkedIn Performance Analytics")
gr.Markdown("Select a date range. Click buttons for actions.")
analytics_status_md = gr.Markdown("Analytics status...")
with gr.Row():
date_filter_selector = gr.Radio(
["All Time", "Last 7 Days", "Last 30 Days", "Custom Range"],
label="Select Date Range", value="All Time", scale=3
)
with gr.Column(scale=2):
custom_start_date_picker = gr.DateTime(label="Start Date", visible=False, include_time=False, type="datetime")
custom_end_date_picker = gr.DateTime(label="End Date", visible=False, include_time=False, type="datetime")
apply_filter_btn = gr.Button("πŸ” Apply Filter & Refresh Analytics", variant="primary")
def toggle_custom_date_pickers(selection):
is_custom = selection == "Custom Range"
return gr.update(visible=is_custom), gr.update(visible=is_custom)
date_filter_selector.change(
fn=toggle_custom_date_pickers,
inputs=[date_filter_selector],
outputs=[custom_start_date_picker, custom_end_date_picker]
)
plot_configs = [
{"label": "Followers Count Over Time", "id": "followers_count", "section": "Follower Dynamics"},
{"label": "Followers Growth Rate", "id": "followers_growth_rate", "section": "Follower Dynamics"},
{"label": "Followers by Location", "id": "followers_by_location", "section": "Follower Demographics"},
{"label": "Followers by Role (Function)", "id": "followers_by_role", "section": "Follower Demographics"},
{"label": "Followers by Industry", "id": "followers_by_industry", "section": "Follower Demographics"},
{"label": "Followers by Seniority", "id": "followers_by_seniority", "section": "Follower Demographics"},
{"label": "Engagement Rate Over Time", "id": "engagement_rate", "section": "Post Performance Insights"},
{"label": "Reach Over Time", "id": "reach_over_time", "section": "Post Performance Insights"},
{"label": "Impressions Over Time", "id": "impressions_over_time", "section": "Post Performance Insights"},
{"label": "Reactions (Likes) Over Time", "id": "likes_over_time", "section": "Post Performance Insights"},
{"label": "Clicks Over Time", "id": "clicks_over_time", "section": "Detailed Post Engagement Over Time"},
{"label": "Shares Over Time", "id": "shares_over_time", "section": "Detailed Post Engagement Over Time"},
{"label": "Comments Over Time", "id": "comments_over_time", "section": "Detailed Post Engagement Over Time"},
{"label": "Breakdown of Comments by Sentiment", "id": "comments_sentiment", "section": "Detailed Post Engagement Over Time"},
{"label": "Post Frequency", "id": "post_frequency_cs", "section": "Content Strategy Analysis"},
{"label": "Breakdown of Content by Format", "id": "content_format_breakdown_cs", "section": "Content Strategy Analysis"},
{"label": "Breakdown of Content by Topics", "id": "content_topic_breakdown_cs", "section": "Content Strategy Analysis"},
{"label": "Mentions Volume Over Time (Detailed)", "id": "mention_analysis_volume", "section": "Mention Analysis (Detailed)"},
{"label": "Breakdown of Mentions by Sentiment (Detailed)", "id": "mention_analysis_sentiment", "section": "Mention Analysis (Detailed)"}
]
assert len(plot_configs) == 19, "Mismatch in plot_configs and expected plots."
active_panel_action_state = gr.State(None)
explored_plot_id_state = gr.State(None)
plot_ui_objects = {}
with gr.Row(equal_height=False):
with gr.Column(scale=8) as plots_area_col:
plot_ui_objects = build_analytics_tab_plot_area(plot_configs)
with gr.Column(scale=4, visible=False) as global_actions_column_ui:
gr.Markdown("### πŸ’‘ Generated Content")
global_actions_markdown_ui = gr.Markdown("Click a button (πŸ’£, Ζ’) on a plot to see content here.")
# --- Event Handler for Insights and Formula Buttons ---
def handle_panel_action(plot_id_clicked, action_type, current_active_action_from_state, current_token_state_val):
logging.info(f"Action '{action_type}' for plot: {plot_id_clicked}. Current active from state: {current_active_action_from_state}")
if not plot_ui_objects or plot_id_clicked not in plot_ui_objects:
logging.error(f"plot_ui_objects not populated or plot_id {plot_id_clicked} not found during handle_panel_action.")
error_updates = [gr.update(visible=False), "Error: UI components not ready.", None] + [gr.update() for _ in range(2 * len(plot_configs))]
return error_updates
clicked_plot_label = plot_ui_objects.get(plot_id_clicked, {}).get("label", "Selected Plot")
hypothetical_new_active_state = {"plot_id": plot_id_clicked, "type": action_type}
is_toggling_off = current_active_action_from_state == hypothetical_new_active_state
new_active_action_state_to_set = None
content_text = ""
action_col_visible = False
if is_toggling_off:
new_active_action_state_to_set = None
content_text = f"{action_type.capitalize()} panel for '{clicked_plot_label}' closed."
action_col_visible = False
logging.info(f"Closing {action_type} panel for {plot_id_clicked}")
else:
new_active_action_state_to_set = hypothetical_new_active_state
action_col_visible = True
if action_type == "insights":
# TODO: Implement actual insight generation
content_text = f"**Insights for: {clicked_plot_label}**\n\nPlot ID: `{plot_id_clicked}`.\n(AI insights generation placeholder)"
elif action_type == "formula":
formula_key = PLOT_ID_TO_FORMULA_KEY_MAP.get(plot_id_clicked)
if formula_key and formula_key in PLOT_FORMULAS:
formula_data = PLOT_FORMULAS[formula_key]
content_text = f"### {formula_data['title']}\n\n"
content_text += f"**Description:**\n{formula_data['description']}\n\n"
content_text += "**Calculation Steps:**\n"
for step in formula_data['calculation_steps']:
content_text += f"- {step}\n"
else:
content_text = f"**Formula/Methodology for: {clicked_plot_label}**\n\nPlot ID: `{plot_id_clicked}`.\n(No detailed formula information found for this plot ID in `formulas.py`)"
logging.info(f"Displaying formula for {plot_id_clicked} (mapped to {formula_key})")
logging.info(f"Opening/switching to {action_type} panel for {plot_id_clicked}")
all_button_updates = []
for cfg_item in plot_configs:
p_id_iter = cfg_item["id"]
if p_id_iter in plot_ui_objects:
if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "insights"}:
all_button_updates.append(gr.update(value=ACTIVE_ICON))
else:
all_button_updates.append(gr.update(value=BOMB_ICON))
if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "formula"}:
all_button_updates.append(gr.update(value=ACTIVE_ICON))
else:
all_button_updates.append(gr.update(value=FORMULA_ICON))
else:
all_button_updates.extend([gr.update(), gr.update()])
final_updates = [
gr.update(visible=action_col_visible),
gr.update(value=content_text),
new_active_action_state_to_set
] + all_button_updates
return final_updates
# --- Event Handler for Explore Button ---
def handle_explore_click(plot_id_clicked, current_explored_plot_id_from_state):
logging.info(f"Explore clicked for: {plot_id_clicked}. Currently explored from state: {current_explored_plot_id_from_state}")
if not plot_ui_objects:
logging.error("plot_ui_objects not populated during handle_explore_click.")
return [current_explored_plot_id_from_state] + [gr.update() for _ in range(2 * len(plot_configs))] # 2 updates per plot_config (panel, explore_button)
new_explored_id_to_set = None
is_toggling_off = (plot_id_clicked == current_explored_plot_id_from_state)
if is_toggling_off:
new_explored_id_to_set = None
logging.info(f"Un-exploring plot: {plot_id_clicked}")
else:
new_explored_id_to_set = plot_id_clicked
logging.info(f"Exploring plot: {plot_id_clicked}")
panel_and_button_updates = []
for cfg in plot_configs:
p_id = cfg["id"]
if p_id in plot_ui_objects:
panel_visible = not new_explored_id_to_set or (p_id == new_explored_id_to_set)
panel_and_button_updates.append(gr.update(visible=panel_visible))
if p_id == new_explored_id_to_set:
panel_and_button_updates.append(gr.update(value=ACTIVE_ICON))
else:
panel_and_button_updates.append(gr.update(value=EXPLORE_ICON))
else:
panel_and_button_updates.extend([gr.update(), gr.update()])
final_updates = [new_explored_id_to_set] + panel_and_button_updates
return final_updates
action_buttons_outputs_list = [
global_actions_column_ui,
global_actions_markdown_ui,
active_panel_action_state
]
for cfg_item_action in plot_configs:
pid_action = cfg_item_action["id"]
if pid_action in plot_ui_objects:
action_buttons_outputs_list.append(plot_ui_objects[pid_action]["bomb_button"])
action_buttons_outputs_list.append(plot_ui_objects[pid_action]["formula_button"])
else:
action_buttons_outputs_list.extend([None, None])
explore_buttons_outputs_list = [explored_plot_id_state]
for cfg_item_explore in plot_configs:
pid_explore = cfg_item_explore["id"]
if pid_explore in plot_ui_objects:
explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["panel_component"])
explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["explore_button"])
else:
explore_buttons_outputs_list.extend([None, None])
action_click_inputs = [active_panel_action_state, token_state]
explore_click_inputs = [explored_plot_id_state]
for config_item in plot_configs:
plot_id = config_item["id"]
if plot_id in plot_ui_objects:
ui_obj = plot_ui_objects[plot_id]
ui_obj["bomb_button"].click(
fn=lambda current_active_val, current_token_val, p_id=plot_id: handle_panel_action(p_id, "insights", current_active_val, current_token_val),
inputs=action_click_inputs,
outputs=action_buttons_outputs_list,
api_name=f"action_insights_{plot_id}"
)
ui_obj["formula_button"].click(
fn=lambda current_active_val, current_token_val, p_id=plot_id: handle_panel_action(p_id, "formula", current_active_val, current_token_val),
inputs=action_click_inputs,
outputs=action_buttons_outputs_list,
api_name=f"action_formula_{plot_id}"
)
ui_obj["explore_button"].click(
fn=lambda current_explored_val, p_id=plot_id: handle_explore_click(p_id, current_explored_val),
inputs=explore_click_inputs,
outputs=explore_buttons_outputs_list,
api_name=f"action_explore_{plot_id}"
)
else:
logging.warning(f"UI object for plot_id '{plot_id}' not found when trying to attach click handlers.")
def refresh_all_analytics_ui_elements(current_token_state, date_filter_val, custom_start_val, custom_end_val):
logging.info("Refreshing all analytics UI elements and resetting actions.")
# The number of plots expected by update_analytics_plots_figures should match plot_configs length
# For this example, it's 19.
plot_generation_results = update_analytics_plots_figures(
current_token_state, date_filter_val, custom_start_val, custom_end_val
)
status_message_update = plot_generation_results[0]
generated_plot_figures = plot_generation_results[1:] # Should be list of 19 figures
all_updates = [status_message_update]
# Updates for plot components (19 of them)
for i in range(len(plot_configs)): # Iterate 19 times
if i < len(generated_plot_figures):
all_updates.append(generated_plot_figures[i])
else:
all_updates.append(create_placeholder_plot("Figure Error", f"Missing figure for plot {plot_configs[i]['id']}"))
all_updates.append(gr.update(visible=False))
all_updates.append(gr.update(value="Click a button (πŸ’£, Ζ’) on a plot..."))
all_updates.append(None)
for cfg in plot_configs: # 19 plots
pid = cfg["id"]
if pid in plot_ui_objects:
all_updates.append(gr.update(value=BOMB_ICON))
all_updates.append(gr.update(value=FORMULA_ICON))
all_updates.append(gr.update(value=EXPLORE_ICON))
all_updates.append(gr.update(visible=True))
else:
all_updates.extend([None, None, None, None])
all_updates.append(None)
logging.info(f"Prepared {len(all_updates)} updates for analytics refresh.")
return all_updates
apply_filter_and_sync_outputs_list = [analytics_status_md]
for config_item_filter_sync in plot_configs: # 19 plots
pid_filter_sync = config_item_filter_sync["id"]
if pid_filter_sync in plot_ui_objects and "plot_component" in plot_ui_objects[pid_filter_sync]:
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync]["plot_component"])
else:
apply_filter_and_sync_outputs_list.append(None)
apply_filter_and_sync_outputs_list.extend([
global_actions_column_ui,
global_actions_markdown_ui,
active_panel_action_state
])
for cfg_filter_sync_btns in plot_configs: # 19 plots
pid_filter_sync_btns = cfg_filter_sync_btns["id"]
if pid_filter_sync_btns in plot_ui_objects:
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["bomb_button"])
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["formula_button"])
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["explore_button"])
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["panel_component"])
else:
apply_filter_and_sync_outputs_list.extend([None, None, None, None])
apply_filter_and_sync_outputs_list.append(explored_plot_id_state)
logging.info(f"Total outputs for apply_filter/sync: {len(apply_filter_and_sync_outputs_list)}") # Expected: 1 + 19 + 3 + (19*4) + 1 = 1 + 19 + 3 + 76 + 1 = 100
apply_filter_btn.click(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=apply_filter_and_sync_outputs_list,
show_progress="full"
)
with gr.TabItem("3️⃣ Mentions", id="tab_mentions"):
refresh_mentions_display_btn = gr.Button("πŸ”„ Refresh Mentions Display", variant="secondary")
mentions_html = gr.HTML("Mentions data...")
mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4️⃣ Follower Stats", id="tab_follower_stats"):
refresh_follower_stats_btn = gr.Button("πŸ”„ Refresh Follower Stats Display", variant="secondary")
follower_stats_html = gr.HTML("Follower statistics...")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)")
fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
sync_event_part1 = sync_data_btn.click(
fn=sync_all_linkedin_data_orchestrator,
inputs=[token_state], outputs=[sync_status_html_output, token_state], show_progress="full"
)
sync_event_part2 = sync_event_part1.then(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn], show_progress=False
)
sync_event_part3 = sync_event_part2.then(
fn=display_main_dashboard,
inputs=[token_state], outputs=[dashboard_display_html], show_progress=False
)
sync_event_final = sync_event_part3.then(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=apply_filter_and_sync_outputs_list, show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' env var not set.")
if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \
not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \
not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR):
logging.warning("WARNING: Bubble env vars not fully set.")
try:
logging.info(f"Matplotlib version: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
except ImportError:
logging.error("Matplotlib is not installed. Plots will not be generated.")
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)