Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
import os | |
import logging | |
import matplotlib | |
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio | |
import matplotlib.pyplot as plt | |
import time # For profiling if needed | |
# --- Module Imports --- | |
from gradio_utils import get_url_user_token | |
# Functions from newly created/refactored modules | |
from config import ( | |
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR, | |
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR | |
) | |
from state_manager import process_and_store_bubble_token | |
from sync_logic import sync_all_linkedin_data_orchestrator | |
from ui_generators import ( | |
display_main_dashboard, | |
run_mentions_tab_display, | |
run_follower_stats_tab_display, | |
build_analytics_tab_plot_area, # Import the updated UI builder | |
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON # Import icons | |
) | |
# Corrected import for analytics_data_processing | |
from analytics_data_processing import prepare_filtered_analytics_data | |
from analytics_plot_generator import ( | |
generate_posts_activity_plot, # Make sure this is available if posts_activity is in map | |
generate_mentions_activity_plot, generate_mention_sentiment_plot, | |
generate_followers_count_over_time_plot, | |
generate_followers_growth_rate_plot, | |
generate_followers_by_demographics_plot, | |
generate_engagement_rate_over_time_plot, | |
generate_reach_over_time_plot, | |
generate_impressions_over_time_plot, | |
create_placeholder_plot, | |
generate_likes_over_time_plot, | |
generate_clicks_over_time_plot, | |
generate_shares_over_time_plot, | |
generate_comments_over_time_plot, | |
generate_comments_sentiment_breakdown_plot, | |
generate_post_frequency_plot, | |
generate_content_format_breakdown_plot, | |
generate_content_topic_breakdown_plot | |
) | |
from formulas import PLOT_FORMULAS # Import the formula descriptions | |
# Configure logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s') | |
# Mapping from plot_configs IDs to PLOT_FORMULAS keys | |
PLOT_ID_TO_FORMULA_KEY_MAP = { | |
"posts_activity": "posts_activity", # Example, if you add it back to plot_configs | |
"mentions_activity": "mentions_activity", # Example, if you add it back | |
"mention_sentiment": "mention_sentiment", # Example, if you add it back | |
"followers_count": "followers_count_over_time", | |
"followers_growth_rate": "followers_growth_rate", | |
"followers_by_location": "followers_by_demographics", | |
"followers_by_role": "followers_by_demographics", | |
"followers_by_industry": "followers_by_demographics", | |
"followers_by_seniority": "followers_by_demographics", | |
"engagement_rate": "engagement_rate_over_time", | |
"reach_over_time": "reach_over_time", | |
"impressions_over_time": "impressions_over_time", | |
"likes_over_time": "likes_over_time", | |
"clicks_over_time": "clicks_over_time", | |
"shares_over_time": "shares_over_time", | |
"comments_over_time": "comments_over_time", | |
"comments_sentiment": "comments_sentiment_breakdown", | |
"post_frequency_cs": "post_frequency", | |
"content_format_breakdown_cs": "content_format_breakdown", | |
"content_topic_breakdown_cs": "content_topic_breakdown", | |
"mention_analysis_volume": "mentions_activity", | |
"mention_analysis_sentiment": "mention_sentiment" | |
} | |
# --- Analytics Tab: Plot Figure Generation Function --- | |
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date): | |
logging.info(f"Updating analytics plot figures. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}") | |
# This num_expected_plots should align with the number of gr.Plot components expected as output. | |
# The plot_configs list has 19 items. | |
# If generate_posts_activity_plot, generate_mentions_activity_plot, generate_mention_sentiment_plot | |
# are added back to the main list of plots directly, this number might change. | |
# For now, it seems the detailed mention plots are re-using figures. | |
num_expected_plots = 19 # Adjusted to match plot_configs length for clarity in this function's direct output list construction | |
if not token_state_value or not token_state_value.get("token"): | |
message = "β Access denied. No token. Cannot generate analytics." | |
logging.warning(message) | |
placeholder_figs = [create_placeholder_plot(title="Access Denied", message="No token.") for _ in range(num_expected_plots)] | |
return [message] + placeholder_figs | |
try: | |
(filtered_merged_posts_df, | |
filtered_mentions_df, | |
date_filtered_follower_stats_df, | |
raw_follower_stats_df, | |
start_dt_for_msg, end_dt_for_msg) = \ | |
prepare_filtered_analytics_data( | |
token_state_value, date_filter_option, custom_start_date, custom_end_date | |
) | |
except Exception as e: | |
error_msg = f"β Error preparing analytics data: {e}" | |
logging.error(error_msg, exc_info=True) | |
placeholder_figs = [create_placeholder_plot(title="Data Preparation Error", message=str(e)) for _ in range(num_expected_plots)] | |
return [error_msg] + placeholder_figs | |
date_column_posts = token_state_value.get("config_date_col_posts", "published_at") | |
date_column_mentions = token_state_value.get("config_date_col_mentions", "date") | |
media_type_col_name = token_state_value.get("config_media_type_col", "media_type") | |
eb_labels_col_name = token_state_value.get("config_eb_labels_col", "li_eb_label") # Corrected from li_eb_label to li_eb_labels if that's the actual key in formulas | |
plot_figs = [] | |
try: | |
# These plots are generated once and potentially re-used if their IDs match later plot_configs | |
# However, the current plot_configs doesn't list these explicitly at the start, | |
# but "mention_analysis_volume" and "mention_analysis_sentiment" will use them. | |
fig_mentions_activity_shared = generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions) | |
fig_mention_sentiment_shared = generate_mention_sentiment_plot(filtered_mentions_df) | |
# Order matters here, must match plot_configs | |
plot_figs.append(generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly')) | |
plot_figs.append(generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly')) | |
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Followers by Location")) | |
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Followers by Role")) | |
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Followers by Industry")) | |
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Followers by Seniority")) | |
plot_figs.append(generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df, sentiment_column='comment_sentiment')) | |
plot_figs.append(generate_post_frequency_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=media_type_col_name)) | |
plot_figs.append(generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=eb_labels_col_name)) # Ensure eb_labels_col_name matches key in formulas if different from 'li_eb_labels' | |
plot_figs.append(fig_mentions_activity_shared) # For "mention_analysis_volume" | |
plot_figs.append(fig_mention_sentiment_shared) # For "mention_analysis_sentiment" | |
message = f"π Analytics updated for period: {date_filter_option}" | |
if date_filter_option == "Custom Range": | |
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Any" | |
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Any" | |
message += f" (From: {s_display} To: {e_display})" | |
final_plot_figs = [] | |
for i, p_fig in enumerate(plot_figs): | |
if p_fig is not None and not isinstance(p_fig, str): | |
final_plot_figs.append(p_fig) | |
else: | |
logging.warning(f"Plot figure generation failed or returned unexpected type for slot {i}, using placeholder. Figure: {p_fig}") | |
final_plot_figs.append(create_placeholder_plot(title="Plot Error", message="Failed to generate this plot figure.")) | |
# Ensure the list has exactly num_expected_plots items. | |
# This padding should ideally not be needed if plot_figs is constructed correctly to match num_expected_plots. | |
while len(final_plot_figs) < num_expected_plots: | |
logging.warning(f"Padding missing plot figure. Expected {num_expected_plots}, got {len(final_plot_figs)}.") | |
final_plot_figs.append(create_placeholder_plot(title="Missing Plot", message="Plot figure could not be generated.")) | |
return [message] + final_plot_figs[:num_expected_plots] # Ensure correct number of plot figures are returned | |
except Exception as e: | |
error_msg = f"β Error generating analytics plot figures: {e}" | |
logging.error(error_msg, exc_info=True) | |
placeholder_figs = [create_placeholder_plot(title="Plot Generation Error", message=str(e)) for _ in range(num_expected_plots)] | |
return [error_msg] + placeholder_figs | |
# --- Gradio UI Blocks --- | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), | |
title="LinkedIn Organization Dashboard") as app: | |
token_state = gr.State(value={ | |
"token": None, "client_id": None, "org_urn": None, | |
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(), | |
"bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(), | |
"fetch_count_for_api": 0, "url_user_token_temp_storage": None, | |
"config_date_col_posts": "published_at", "config_date_col_mentions": "date", | |
"config_date_col_followers": "date", "config_media_type_col": "media_type", | |
"config_eb_labels_col": "li_eb_labels" # Ensure this matches the column name used in plot generator and formulas.py | |
}) | |
gr.Markdown("# π LinkedIn Organization Dashboard") | |
url_user_token_display = gr.Textbox(label="User Token (Hidden)", interactive=False, visible=False) | |
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...") | |
org_urn_display = gr.Textbox(label="Organization URN (Hidden)", interactive=False, visible=False) | |
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False) | |
def initial_load_sequence(url_token, org_urn_val, current_state): | |
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state) | |
dashboard_content = display_main_dashboard(new_state) | |
return status_msg, new_state, btn_update, dashboard_content | |
with gr.Tabs() as tabs: | |
with gr.TabItem("1οΈβ£ Dashboard & Sync", id="tab_dashboard_sync"): | |
gr.Markdown("System checks for existing data from Bubble. 'Sync' activates if new data is needed.") | |
sync_data_btn = gr.Button("π Sync LinkedIn Data", variant="primary", visible=False, interactive=False) | |
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Sync status...</p>") | |
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Dashboard loading...</p>") | |
org_urn_display.change( | |
fn=initial_load_sequence, | |
inputs=[url_user_token_display, org_urn_display, token_state], | |
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html], | |
show_progress="full" | |
) | |
with gr.TabItem("2οΈβ£ Analytics", id="tab_analytics"): | |
gr.Markdown("## π LinkedIn Performance Analytics") | |
gr.Markdown("Select a date range. Click buttons for actions.") | |
analytics_status_md = gr.Markdown("Analytics status...") | |
with gr.Row(): | |
date_filter_selector = gr.Radio( | |
["All Time", "Last 7 Days", "Last 30 Days", "Custom Range"], | |
label="Select Date Range", value="All Time", scale=3 | |
) | |
with gr.Column(scale=2): | |
custom_start_date_picker = gr.DateTime(label="Start Date", visible=False, include_time=False, type="datetime") | |
custom_end_date_picker = gr.DateTime(label="End Date", visible=False, include_time=False, type="datetime") | |
apply_filter_btn = gr.Button("π Apply Filter & Refresh Analytics", variant="primary") | |
def toggle_custom_date_pickers(selection): | |
is_custom = selection == "Custom Range" | |
return gr.update(visible=is_custom), gr.update(visible=is_custom) | |
date_filter_selector.change( | |
fn=toggle_custom_date_pickers, | |
inputs=[date_filter_selector], | |
outputs=[custom_start_date_picker, custom_end_date_picker] | |
) | |
plot_configs = [ | |
{"label": "Followers Count Over Time", "id": "followers_count", "section": "Follower Dynamics"}, | |
{"label": "Followers Growth Rate", "id": "followers_growth_rate", "section": "Follower Dynamics"}, | |
{"label": "Followers by Location", "id": "followers_by_location", "section": "Follower Demographics"}, | |
{"label": "Followers by Role (Function)", "id": "followers_by_role", "section": "Follower Demographics"}, | |
{"label": "Followers by Industry", "id": "followers_by_industry", "section": "Follower Demographics"}, | |
{"label": "Followers by Seniority", "id": "followers_by_seniority", "section": "Follower Demographics"}, | |
{"label": "Engagement Rate Over Time", "id": "engagement_rate", "section": "Post Performance Insights"}, | |
{"label": "Reach Over Time", "id": "reach_over_time", "section": "Post Performance Insights"}, | |
{"label": "Impressions Over Time", "id": "impressions_over_time", "section": "Post Performance Insights"}, | |
{"label": "Reactions (Likes) Over Time", "id": "likes_over_time", "section": "Post Performance Insights"}, | |
{"label": "Clicks Over Time", "id": "clicks_over_time", "section": "Detailed Post Engagement Over Time"}, | |
{"label": "Shares Over Time", "id": "shares_over_time", "section": "Detailed Post Engagement Over Time"}, | |
{"label": "Comments Over Time", "id": "comments_over_time", "section": "Detailed Post Engagement Over Time"}, | |
{"label": "Breakdown of Comments by Sentiment", "id": "comments_sentiment", "section": "Detailed Post Engagement Over Time"}, | |
{"label": "Post Frequency", "id": "post_frequency_cs", "section": "Content Strategy Analysis"}, | |
{"label": "Breakdown of Content by Format", "id": "content_format_breakdown_cs", "section": "Content Strategy Analysis"}, | |
{"label": "Breakdown of Content by Topics", "id": "content_topic_breakdown_cs", "section": "Content Strategy Analysis"}, | |
{"label": "Mentions Volume Over Time (Detailed)", "id": "mention_analysis_volume", "section": "Mention Analysis (Detailed)"}, | |
{"label": "Breakdown of Mentions by Sentiment (Detailed)", "id": "mention_analysis_sentiment", "section": "Mention Analysis (Detailed)"} | |
] | |
assert len(plot_configs) == 19, "Mismatch in plot_configs and expected plots." | |
active_panel_action_state = gr.State(None) | |
explored_plot_id_state = gr.State(None) | |
plot_ui_objects = {} | |
with gr.Row(equal_height=False): | |
with gr.Column(scale=8) as plots_area_col: | |
plot_ui_objects = build_analytics_tab_plot_area(plot_configs) | |
with gr.Column(scale=4, visible=False) as global_actions_column_ui: | |
gr.Markdown("### π‘ Generated Content") | |
global_actions_markdown_ui = gr.Markdown("Click a button (π£, Ζ) on a plot to see content here.") | |
# --- Event Handler for Insights and Formula Buttons --- | |
def handle_panel_action(plot_id_clicked, action_type, current_active_action_from_state, current_token_state_val): | |
logging.info(f"Action '{action_type}' for plot: {plot_id_clicked}. Current active from state: {current_active_action_from_state}") | |
if not plot_ui_objects or plot_id_clicked not in plot_ui_objects: | |
logging.error(f"plot_ui_objects not populated or plot_id {plot_id_clicked} not found during handle_panel_action.") | |
error_updates = [gr.update(visible=False), "Error: UI components not ready.", None] + [gr.update() for _ in range(2 * len(plot_configs))] | |
return error_updates | |
clicked_plot_label = plot_ui_objects.get(plot_id_clicked, {}).get("label", "Selected Plot") | |
hypothetical_new_active_state = {"plot_id": plot_id_clicked, "type": action_type} | |
is_toggling_off = current_active_action_from_state == hypothetical_new_active_state | |
new_active_action_state_to_set = None | |
content_text = "" | |
action_col_visible = False | |
if is_toggling_off: | |
new_active_action_state_to_set = None | |
content_text = f"{action_type.capitalize()} panel for '{clicked_plot_label}' closed." | |
action_col_visible = False | |
logging.info(f"Closing {action_type} panel for {plot_id_clicked}") | |
else: | |
new_active_action_state_to_set = hypothetical_new_active_state | |
action_col_visible = True | |
if action_type == "insights": | |
# TODO: Implement actual insight generation | |
content_text = f"**Insights for: {clicked_plot_label}**\n\nPlot ID: `{plot_id_clicked}`.\n(AI insights generation placeholder)" | |
elif action_type == "formula": | |
formula_key = PLOT_ID_TO_FORMULA_KEY_MAP.get(plot_id_clicked) | |
if formula_key and formula_key in PLOT_FORMULAS: | |
formula_data = PLOT_FORMULAS[formula_key] | |
content_text = f"### {formula_data['title']}\n\n" | |
content_text += f"**Description:**\n{formula_data['description']}\n\n" | |
content_text += "**Calculation Steps:**\n" | |
for step in formula_data['calculation_steps']: | |
content_text += f"- {step}\n" | |
else: | |
content_text = f"**Formula/Methodology for: {clicked_plot_label}**\n\nPlot ID: `{plot_id_clicked}`.\n(No detailed formula information found for this plot ID in `formulas.py`)" | |
logging.info(f"Displaying formula for {plot_id_clicked} (mapped to {formula_key})") | |
logging.info(f"Opening/switching to {action_type} panel for {plot_id_clicked}") | |
all_button_updates = [] | |
for cfg_item in plot_configs: | |
p_id_iter = cfg_item["id"] | |
if p_id_iter in plot_ui_objects: | |
if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "insights"}: | |
all_button_updates.append(gr.update(value=ACTIVE_ICON)) | |
else: | |
all_button_updates.append(gr.update(value=BOMB_ICON)) | |
if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "formula"}: | |
all_button_updates.append(gr.update(value=ACTIVE_ICON)) | |
else: | |
all_button_updates.append(gr.update(value=FORMULA_ICON)) | |
else: | |
all_button_updates.extend([gr.update(), gr.update()]) | |
final_updates = [ | |
gr.update(visible=action_col_visible), | |
gr.update(value=content_text), | |
new_active_action_state_to_set | |
] + all_button_updates | |
return final_updates | |
# --- Event Handler for Explore Button --- | |
def handle_explore_click(plot_id_clicked, current_explored_plot_id_from_state): | |
logging.info(f"Explore clicked for: {plot_id_clicked}. Currently explored from state: {current_explored_plot_id_from_state}") | |
if not plot_ui_objects: | |
logging.error("plot_ui_objects not populated during handle_explore_click.") | |
return [current_explored_plot_id_from_state] + [gr.update() for _ in range(2 * len(plot_configs))] # 2 updates per plot_config (panel, explore_button) | |
new_explored_id_to_set = None | |
is_toggling_off = (plot_id_clicked == current_explored_plot_id_from_state) | |
if is_toggling_off: | |
new_explored_id_to_set = None | |
logging.info(f"Un-exploring plot: {plot_id_clicked}") | |
else: | |
new_explored_id_to_set = plot_id_clicked | |
logging.info(f"Exploring plot: {plot_id_clicked}") | |
panel_and_button_updates = [] | |
for cfg in plot_configs: | |
p_id = cfg["id"] | |
if p_id in plot_ui_objects: | |
panel_visible = not new_explored_id_to_set or (p_id == new_explored_id_to_set) | |
panel_and_button_updates.append(gr.update(visible=panel_visible)) | |
if p_id == new_explored_id_to_set: | |
panel_and_button_updates.append(gr.update(value=ACTIVE_ICON)) | |
else: | |
panel_and_button_updates.append(gr.update(value=EXPLORE_ICON)) | |
else: | |
panel_and_button_updates.extend([gr.update(), gr.update()]) | |
final_updates = [new_explored_id_to_set] + panel_and_button_updates | |
return final_updates | |
action_buttons_outputs_list = [ | |
global_actions_column_ui, | |
global_actions_markdown_ui, | |
active_panel_action_state | |
] | |
for cfg_item_action in plot_configs: | |
pid_action = cfg_item_action["id"] | |
if pid_action in plot_ui_objects: | |
action_buttons_outputs_list.append(plot_ui_objects[pid_action]["bomb_button"]) | |
action_buttons_outputs_list.append(plot_ui_objects[pid_action]["formula_button"]) | |
else: | |
action_buttons_outputs_list.extend([None, None]) | |
explore_buttons_outputs_list = [explored_plot_id_state] | |
for cfg_item_explore in plot_configs: | |
pid_explore = cfg_item_explore["id"] | |
if pid_explore in plot_ui_objects: | |
explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["panel_component"]) | |
explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["explore_button"]) | |
else: | |
explore_buttons_outputs_list.extend([None, None]) | |
action_click_inputs = [active_panel_action_state, token_state] | |
explore_click_inputs = [explored_plot_id_state] | |
for config_item in plot_configs: | |
plot_id = config_item["id"] | |
if plot_id in plot_ui_objects: | |
ui_obj = plot_ui_objects[plot_id] | |
ui_obj["bomb_button"].click( | |
fn=lambda current_active_val, current_token_val, p_id=plot_id: handle_panel_action(p_id, "insights", current_active_val, current_token_val), | |
inputs=action_click_inputs, | |
outputs=action_buttons_outputs_list, | |
api_name=f"action_insights_{plot_id}" | |
) | |
ui_obj["formula_button"].click( | |
fn=lambda current_active_val, current_token_val, p_id=plot_id: handle_panel_action(p_id, "formula", current_active_val, current_token_val), | |
inputs=action_click_inputs, | |
outputs=action_buttons_outputs_list, | |
api_name=f"action_formula_{plot_id}" | |
) | |
ui_obj["explore_button"].click( | |
fn=lambda current_explored_val, p_id=plot_id: handle_explore_click(p_id, current_explored_val), | |
inputs=explore_click_inputs, | |
outputs=explore_buttons_outputs_list, | |
api_name=f"action_explore_{plot_id}" | |
) | |
else: | |
logging.warning(f"UI object for plot_id '{plot_id}' not found when trying to attach click handlers.") | |
def refresh_all_analytics_ui_elements(current_token_state, date_filter_val, custom_start_val, custom_end_val): | |
logging.info("Refreshing all analytics UI elements and resetting actions.") | |
# The number of plots expected by update_analytics_plots_figures should match plot_configs length | |
# For this example, it's 19. | |
plot_generation_results = update_analytics_plots_figures( | |
current_token_state, date_filter_val, custom_start_val, custom_end_val | |
) | |
status_message_update = plot_generation_results[0] | |
generated_plot_figures = plot_generation_results[1:] # Should be list of 19 figures | |
all_updates = [status_message_update] | |
# Updates for plot components (19 of them) | |
for i in range(len(plot_configs)): # Iterate 19 times | |
if i < len(generated_plot_figures): | |
all_updates.append(generated_plot_figures[i]) | |
else: | |
all_updates.append(create_placeholder_plot("Figure Error", f"Missing figure for plot {plot_configs[i]['id']}")) | |
all_updates.append(gr.update(visible=False)) | |
all_updates.append(gr.update(value="Click a button (π£, Ζ) on a plot...")) | |
all_updates.append(None) | |
for cfg in plot_configs: # 19 plots | |
pid = cfg["id"] | |
if pid in plot_ui_objects: | |
all_updates.append(gr.update(value=BOMB_ICON)) | |
all_updates.append(gr.update(value=FORMULA_ICON)) | |
all_updates.append(gr.update(value=EXPLORE_ICON)) | |
all_updates.append(gr.update(visible=True)) | |
else: | |
all_updates.extend([None, None, None, None]) | |
all_updates.append(None) | |
logging.info(f"Prepared {len(all_updates)} updates for analytics refresh.") | |
return all_updates | |
apply_filter_and_sync_outputs_list = [analytics_status_md] | |
for config_item_filter_sync in plot_configs: # 19 plots | |
pid_filter_sync = config_item_filter_sync["id"] | |
if pid_filter_sync in plot_ui_objects and "plot_component" in plot_ui_objects[pid_filter_sync]: | |
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync]["plot_component"]) | |
else: | |
apply_filter_and_sync_outputs_list.append(None) | |
apply_filter_and_sync_outputs_list.extend([ | |
global_actions_column_ui, | |
global_actions_markdown_ui, | |
active_panel_action_state | |
]) | |
for cfg_filter_sync_btns in plot_configs: # 19 plots | |
pid_filter_sync_btns = cfg_filter_sync_btns["id"] | |
if pid_filter_sync_btns in plot_ui_objects: | |
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["bomb_button"]) | |
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["formula_button"]) | |
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["explore_button"]) | |
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["panel_component"]) | |
else: | |
apply_filter_and_sync_outputs_list.extend([None, None, None, None]) | |
apply_filter_and_sync_outputs_list.append(explored_plot_id_state) | |
logging.info(f"Total outputs for apply_filter/sync: {len(apply_filter_and_sync_outputs_list)}") # Expected: 1 + 19 + 3 + (19*4) + 1 = 1 + 19 + 3 + 76 + 1 = 100 | |
apply_filter_btn.click( | |
fn=refresh_all_analytics_ui_elements, | |
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker], | |
outputs=apply_filter_and_sync_outputs_list, | |
show_progress="full" | |
) | |
with gr.TabItem("3οΈβ£ Mentions", id="tab_mentions"): | |
refresh_mentions_display_btn = gr.Button("π Refresh Mentions Display", variant="secondary") | |
mentions_html = gr.HTML("Mentions data...") | |
mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution") | |
refresh_mentions_display_btn.click( | |
fn=run_mentions_tab_display, inputs=[token_state], | |
outputs=[mentions_html, mentions_sentiment_dist_plot], | |
show_progress="full" | |
) | |
with gr.TabItem("4οΈβ£ Follower Stats", id="tab_follower_stats"): | |
refresh_follower_stats_btn = gr.Button("π Refresh Follower Stats Display", variant="secondary") | |
follower_stats_html = gr.HTML("Follower statistics...") | |
with gr.Row(): | |
fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains") | |
with gr.Row(): | |
fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)") | |
fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)") | |
refresh_follower_stats_btn.click( | |
fn=run_follower_stats_tab_display, inputs=[token_state], | |
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry], | |
show_progress="full" | |
) | |
sync_event_part1 = sync_data_btn.click( | |
fn=sync_all_linkedin_data_orchestrator, | |
inputs=[token_state], outputs=[sync_status_html_output, token_state], show_progress="full" | |
) | |
sync_event_part2 = sync_event_part1.then( | |
fn=process_and_store_bubble_token, | |
inputs=[url_user_token_display, org_urn_display, token_state], | |
outputs=[status_box, token_state, sync_data_btn], show_progress=False | |
) | |
sync_event_part3 = sync_event_part2.then( | |
fn=display_main_dashboard, | |
inputs=[token_state], outputs=[dashboard_display_html], show_progress=False | |
) | |
sync_event_final = sync_event_part3.then( | |
fn=refresh_all_analytics_ui_elements, | |
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker], | |
outputs=apply_filter_and_sync_outputs_list, show_progress="full" | |
) | |
if __name__ == "__main__": | |
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): | |
logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' env var not set.") | |
if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \ | |
not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \ | |
not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR): | |
logging.warning("WARNING: Bubble env vars not fully set.") | |
try: | |
logging.info(f"Matplotlib version: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}") | |
except ImportError: | |
logging.error("Matplotlib is not installed. Plots will not be generated.") | |
app.launch(server_name="0.0.0.0", server_port=7860, debug=True) | |