LinkedinMonitor / run_agentic_pipeline.py
GuglielmoTor's picture
Update run_agentic_pipeline.py
6d6572c verified
raw
history blame
5.01 kB
# run_agentic_pipeline.py
import asyncio
import os
import json
import logging
from datetime import datetime
import pandas as pd
from typing import Dict, Any, Optional
# Assuming this script is at the same level as 'app.py' and 'insight_and_tasks/' is a subfolder
# If 'insight_and_tasks' is not in python path, you might need to adjust sys.path
# For example, if insight_and_tasks is a sibling of the dir containing this file:
# import sys
# script_dir = os.path.dirname(os.path.abspath(__file__))
# project_root = os.path.dirname(script_dir) # Or navigate to the correct root
# sys.path.insert(0, project_root)
os.environ["GOOGLE_GENAI_USE_VERTEXAI"] = "False"
GOOGLE_API_KEY = os.environ.get("GEMINI_API_KEY")
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
# Imports from your project structure
from insight_and_tasks.orchestrators.linkedin_analytics_orchestrator import EnhancedLinkedInAnalyticsOrchestrator
# setup_logging might be called in app.py, if not, call it here or ensure it's called once.
# from insight_and_tasks.utils.logging_config import setup_logging
from analytics_data_processing import prepare_filtered_analytics_data
# Placeholder for UI generator import - to be created later
# from .insights_ui_generator import format_orchestration_results_for_ui
logger = logging.getLogger(__name__)
async def run_full_analytics_orchestration(
token_state: Dict[str, Any],
date_filter_selection: str,
custom_start_date: Optional[datetime],
custom_end_date: Optional[datetime]
) -> Optional[Dict[str, Any]]:
"""
Runs the full analytics pipeline using data from token_state and date filters,
and returns the raw orchestration results.
Args:
token_state: Gradio token_state containing raw data and config.
date_filter_selection: String for date filter type.
custom_start_date: Optional custom start date.
custom_end_date: Optional custom end date.
Returns:
A dictionary containing the results from the analytics orchestrator,
or None if a critical error occurs.
"""
if not GOOGLE_API_KEY:
logger.critical("GOOGLE_API_KEY is not set. Analytics pipeline cannot run.")
return None
logger.info("Starting full analytics orchestration process...")
# 1. Prepare and filter data
try:
(
filtered_posts_df,
filtered_mentions_df,
_date_filtered_follower_stats_df, # This might be used if FollowerAgent specifically needs pre-filtered time series
raw_follower_stats_df, # FollowerAgent typically processes raw historical for some metrics
_start_dt, # Filtered start date, for logging or context if needed
_end_dt # Filtered end date
) = prepare_filtered_analytics_data(
token_state, date_filter_selection, custom_start_date, custom_end_date
)
logger.info(f"Data prepared: Posts({len(filtered_posts_df)}), Mentions({len(filtered_mentions_df)}), FollowerStatsRaw({len(raw_follower_stats_df)})")
except Exception as e:
logger.error(f"Error during data preparation: {e}", exc_info=True)
return None
# Check if essential dataframes are empty after filtering, which might make analysis trivial or erroneous
if filtered_posts_df.empty and filtered_mentions_df.empty and raw_follower_stats_df.empty:
logger.warning("All essential DataFrames are empty after filtering. Orchestration might yield limited results.")
# Depending on requirements, you might return a specific message or empty results structure.
# 2. Initialize and run the orchestrator
try:
# You can pass a specific model name or let the orchestrator use its default
llm_model_for_run = "gemini-2.5-flash-preview-05-20" #token_state.get("config_llm_model_override") # Example: if you store this in token_state
orchestrator = EnhancedLinkedInAnalyticsOrchestrator(
api_key=GOOGLE_API_KEY,
llm_model_name=llm_model_for_run, # Pass None to use orchestrator's default
current_date_for_tasks=datetime.utcnow().date()
)
logger.info("Orchestrator initialized. Generating full analysis and tasks...")
# The orchestrator expects the primary follower stats DF to be the one it can process for
# time-series ('follower_gains_monthly') and demographics.
# The `raw_follower_stats_df` is usually better for this, as FollowerAgent does its own processing.
orchestration_results = await orchestrator.generate_full_analysis_and_tasks(
follower_stats_df=raw_follower_stats_df, # Pass the full history for followers
post_df=filtered_posts_df,
mentions_df=filtered_mentions_df
)
logger.info("Orchestration process completed.")
return orchestration_results
except Exception as e:
logger.critical(f"Critical error during analytics orchestration: {e}", exc_info=True)
return None