Spaces:
Running
Running
File size: 21,648 Bytes
f20ee95 8019346 c8187fc 95677de 37c2a7c f20ee95 c8187fc eaa683c c8187fc eaa683c c8187fc eaa683c bc9de29 f20ee95 eaa683c bc9de29 eaa683c bc9de29 c8187fc eaa683c c8187fc bc9de29 c8187fc eaa683c bc9de29 8019346 c8187fc 2f0e48a c8187fc bc9de29 eaa683c bc9de29 eaa683c c8187fc bc9de29 c8187fc bc9de29 c8187fc bc9de29 eaa683c bc9de29 c8187fc bc9de29 c8187fc eaa683c c8187fc 7f147c5 f20ee95 c8187fc bc9de29 c8187fc bc9de29 c8187fc bc9de29 c8187fc bc9de29 c8187fc bc9de29 c8187fc f20ee95 c8187fc bc9de29 c8187fc bc9de29 08d342a eaa683c c8187fc 08d342a c8187fc bc9de29 c8187fc bc9de29 c8187fc b7a0e8c eaa683c c8187fc bc9de29 eaa683c bc9de29 c8187fc eaa683c bc9de29 eaa683c bc9de29 eaa683c 8019346 c8187fc bc9de29 c8187fc bc9de29 c8187fc bc9de29 c8187fc bc9de29 8019346 c8187fc eaa683c bc9de29 eaa683c bc9de29 eaa683c bc9de29 eaa683c c8187fc eaa683c c8187fc bc9de29 eaa683c bc9de29 c8187fc bc9de29 c8187fc bc9de29 c8187fc 8019346 eaa683c c8187fc 617c2c1 eaa683c c8187fc eaa683c bc9de29 c8187fc 617c2c1 eaa683c bc9de29 eaa683c bc9de29 eaa683c 617c2c1 eaa683c a61d521 eaa683c bc9de29 c8187fc bc9de29 eaa683c c8187fc bc9de29 eaa683c 617c2c1 eaa683c c8187fc bc9de29 7f147c5 c8187fc bc9de29 48a048c c8187fc 48a048c c8187fc eaa683c 48a048c c8187fc 48a048c eaa683c 48a048c eaa683c 48a048c eaa683c 48a048c eaa683c c8187fc eaa683c c8187fc eaa683c c8187fc eaa683c c8187fc eaa683c c8187fc 776c970 c8187fc eaa683c c8187fc 64b4cd4 c8187fc eaa683c a61d521 eaa683c 48a048c eaa683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
import pandas as pd
import matplotlib.pyplot as plt
import logging
from io import BytesIO
import base64
import numpy as np
import matplotlib.ticker as mticker
import matplotlib.patches as patches
import ast
from data_processing.analytics_data_processing import (
generate_chatbot_data_summaries,
prepare_filtered_analytics_data
)
# Configure logging for this module
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
def _apply_theme_aware_styling(fig, ax, is_pie=False):
"""
Applies a modern, theme-aware style to a Matplotlib plot.
It reads colors from rcParams, which Gradio sets based on the theme.
"""
try:
# Use a modern, clean style as a base
plt.style.use('seaborn-v0_8-whitegrid')
# Get theme-aware colors from Matplotlib's runtime configuration
TEXT_COLOR = plt.rcParams.get('text.color', '#E5E7EB') # Default to light gray for dark themes
GRID_COLOR = plt.rcParams.get('grid.color', '#4B5563') # Default to a darker grid
FACE_COLOR = plt.rcParams.get('axes.facecolor', '#1F2937') # Default to dark gray
EDGE_COLOR = plt.rcParams.get('axes.edgecolor', '#374151') # Default to a slightly lighter gray
FIG_FACE_COLOR = plt.rcParams.get('figure.facecolor', '#111827') # Default to very dark gray
fig.set_facecolor(FIG_FACE_COLOR)
ax.set_facecolor(FACE_COLOR)
# Apply the theme's text color to all major text elements.
ax.title.set_color(TEXT_COLOR)
ax.xaxis.label.set_color(TEXT_COLOR)
ax.yaxis.label.set_color(TEXT_COLOR)
# Apply the theme's text color to the tick labels and tick marks.
ax.tick_params(axis='x', colors=TEXT_COLOR)
ax.tick_params(axis='y', colors=TEXT_COLOR)
# Remove spines for a cleaner look
if not is_pie:
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_color(EDGE_COLOR)
ax.spines['left'].set_color(EDGE_COLOR)
else:
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
# Set grid color and ensure it's drawn behind data
ax.grid(True, linestyle='--', alpha=0.6, zorder=0, color=GRID_COLOR)
except Exception as e:
logging.error(f"Error applying theme styling: {e}")
def create_placeholder_plot(title="No Data or Plot Error", message="Data might be empty or an error occurred."):
"""Creates a theme-aware placeholder Matplotlib plot."""
try:
fig, ax = plt.subplots(figsize=(8, 4))
_apply_theme_aware_styling(fig, ax)
TEXT_COLOR = plt.rcParams.get('text.color', '#E5E7EB')
ax.text(0.5, 0.5, f"{title}\n{message}", ha='center', va='center', fontsize=12, wrap=True, zorder=1, color=TEXT_COLOR, alpha=0.7)
ax.axis('off')
fig.tight_layout()
return fig
except Exception as e:
logging.error(f"Error creating placeholder plot: {e}")
fig_err, ax_err = plt.subplots(figsize=(8,4))
fig_err.patch.set_facecolor('#111827')
ax_err.set_facecolor('#1F2937')
ax_err.text(0.5, 0.5, "Fatal: Plot generation error", ha='center', va='center', zorder=1, color='red')
ax_err.axis('off')
return fig_err
# --- Generic and Reusable Plotting Functions ---
def generate_generic_time_series_plot(df, date_column, value_column, title, ylabel, color='cyan'):
"""Generic function to create a theme-aware time series plot."""
if df is None or df.empty or date_column not in df.columns or value_column not in df.columns:
logging.info(f"len df {len(df) if df else 0}, dat col {date_column}, value_column {value_column} ")
return create_placeholder_plot(title=title, message="No data available.")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[value_column] = pd.to_numeric(df_copy[value_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, value_column]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data.")
data_over_time = df_copy.resample('D')[value_column].sum()
if data_over_time.empty:
return create_placeholder_plot(title=title, message="No data in the selected period.")
fig, ax = plt.subplots(figsize=(10, 5))
_apply_theme_aware_styling(fig, ax)
ax.plot(data_over_time.index, data_over_time.values, marker='o', linestyle='-', color=color, zorder=1, markersize=5, alpha=0.8)
ax.fill_between(data_over_time.index, data_over_time.values, color=color, alpha=0.1, zorder=1)
ax.set_title(title, fontsize=14, weight='bold')
ax.set_xlabel('Date', fontsize=10)
ax.set_ylabel(ylabel, fontsize=10)
plt.xticks(rotation=30, ha="right")
fig.tight_layout(pad=1.5)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_generic_bar_plot(data_series, title, xlabel, ylabel, color_map='viridis'):
"""Generic function to create a theme-aware bar plot."""
if data_series is None or data_series.empty:
return create_placeholder_plot(title=title, message="No data to display.")
fig = None
try:
fig, ax = plt.subplots(figsize=(10, 6))
_apply_theme_aware_styling(fig, ax)
colors = plt.cm.get_cmap(color_map)(np.linspace(0.4, 0.9, len(data_series)))
data_series.plot(kind='bar', ax=ax, zorder=2, color=colors, width=0.8)
ax.set_title(title, fontsize=14, weight='bold')
ax.set_xlabel(xlabel, fontsize=10)
ax.set_ylabel(ylabel, fontsize=10)
plt.xticks(rotation=45, ha="right")
TEXT_COLOR = plt.rcParams.get('text.color', '#E5E7EB')
for i, v in enumerate(data_series):
ax.text(i, v + (0.01 * data_series.max()), str(int(v)), ha='center', va='bottom', zorder=3, color=TEXT_COLOR, fontsize=9)
fig.tight_layout(pad=1.5)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_generic_pie_chart(data_series, title, color_map='Pastel2'):
"""Generic function to create a theme-aware pie chart."""
if data_series is None or data_series.empty:
return create_placeholder_plot(title=title, message="No data available.")
fig = None
try:
fig, ax = plt.subplots(figsize=(8, 6))
_apply_theme_aware_styling(fig, ax, is_pie=True)
THEME_TEXT_COLOR = plt.rcParams.get('text.color', '#E5E7EB')
pie_slice_colors = plt.cm.get_cmap(color_map, len(data_series))
colors = [pie_slice_colors(i) for i in range(len(data_series))]
wedges, texts, autotexts = ax.pie(
data_series,
autopct='%1.1f%%',
startangle=140,
colors=colors,
pctdistance=0.85,
wedgeprops=dict(width=0.4, edgecolor=plt.rcParams.get('figure.facecolor', '#111827'), linewidth=2)
)
for text_item in texts + autotexts:
text_item.set_color(THEME_TEXT_COLOR)
text_item.set_fontsize(10)
text_item.set_zorder(2)
for autotext in autotexts:
autotext.set_weight('bold')
ax.set_title(title, fontsize=14, weight='bold', pad=20)
ax.legend(wedges, data_series.index, title="Categories", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1),
labelcolor=THEME_TEXT_COLOR,
frameon=False)
fig.tight_layout(pad=1.5)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
# --- Specific Plot Implementations ---
def generate_followers_count_over_time_plot(df, **kwargs):
type_value = kwargs.get('type_value', 'follower_gains_monthly')
title = f"Followers Count Over Time"
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No follower data available.")
fig = None
try:
df_filtered = df[df['follower_count_type'] == type_value].copy()
if df_filtered.empty:
return create_placeholder_plot(title=title, message=f"No data for type '{type_value}'.")
df_filtered['datetime_obj'] = pd.to_datetime(df_filtered['category_name'], errors='coerce')
df_filtered['follower_count_organic'] = pd.to_numeric(df_filtered['follower_count_organic'], errors='coerce').fillna(0)
df_filtered['follower_count_paid'] = pd.to_numeric(df_filtered['follower_count_paid'], errors='coerce').fillna(0)
df_filtered = df_filtered.dropna(subset=['datetime_obj']).sort_values(by='datetime_obj')
if df_filtered.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning.")
fig, ax = plt.subplots(figsize=(10, 5))
_apply_theme_aware_styling(fig, ax)
ax.plot(df_filtered['datetime_obj'], df_filtered['follower_count_organic'], marker='o', linestyle='-', color='#22D3EE', label='Organic Followers', zorder=1)
ax.plot(df_filtered['datetime_obj'], df_filtered['follower_count_paid'], marker='x', linestyle='--', color='#A78BFA', label='Paid Followers', zorder=1)
ax.set_title(title, fontsize=14, weight='bold')
ax.set_xlabel('Date')
ax.set_ylabel('Follower Count')
legend = ax.legend()
for text in legend.get_texts():
text.set_color(plt.rcParams.get('text.color', 'black'))
legend.set_zorder(2)
legend.get_frame().set_alpha(0.5)
legend.get_frame().set_facecolor('#1F2937')
plt.xticks(rotation=30, ha="right")
fig.tight_layout(pad=1.5)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_followers_by_demographics_plot(df, **kwargs):
plot_title = kwargs.get('plot_title', "Followers by Demographics")
type_value = kwargs.get('type_value')
if df is None or df.empty or not type_value:
return create_placeholder_plot(title=plot_title, message="No data or demographic type not specified.")
fig = None
try:
df_filtered = df[df['follower_count_type'] == type_value].copy()
if df_filtered.empty:
return create_placeholder_plot(title=plot_title, message=f"No data for type '{type_value}'.")
df_filtered['follower_count_organic'] = pd.to_numeric(df_filtered['follower_count_organic'], errors='coerce').fillna(0)
demographics_data = df_filtered.groupby('category_name')['follower_count_organic'].sum()
demographics_data = demographics_data.sort_values(ascending=False).head(10)
if demographics_data.empty:
return create_placeholder_plot(title=plot_title, message="No demographic data to display.")
return generate_generic_bar_plot(demographics_data, plot_title, 'Category', 'Number of Followers', 'plasma')
except Exception as e:
logging.error(f"Error in {plot_title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{plot_title} Error", message=str(e))
def generate_engagement_rate_over_time_plot(df, date_column='published_at', engagement_rate_col='engagement'):
title = "Engagement Rate Over Time"
# This plot is a specific time series, so we use the generic function
return generate_generic_time_series_plot(df, date_column, engagement_rate_col, title, 'Engagement Rate (%)', color='#F472B6')
def generate_content_format_breakdown_plot(df, format_col='media_type', **kwargs):
title = "Content by Format"
if df is None or df.empty or format_col not in df.columns:
return create_placeholder_plot(title=title, message="No data available.")
format_counts = df[format_col].value_counts().dropna()
return generate_generic_pie_chart(format_counts, title, 'viridis')
def _parse_eb_label(label_data):
if isinstance(label_data, list): return label_data
if isinstance(label_data, str):
try:
parsed = ast.literal_eval(label_data)
return parsed if isinstance(parsed, list) else [str(parsed)]
except (ValueError, SyntaxError):
return [label_data.strip()] if label_data.strip() else []
return [] if pd.isna(label_data) else [str(label_data)]
def generate_content_topic_breakdown_plot(df, topics_col='li_eb_labels', **kwargs):
title = "Content by Topics"
if df is None or df.empty or topics_col not in df.columns:
return create_placeholder_plot(title=title, message="No data available.")
try:
topic_counts = df[topics_col].apply(_parse_eb_label).explode().dropna().value_counts()
topic_counts = topic_counts[topic_counts.index != ''].nlargest(15).sort_values(ascending=True)
if topic_counts.empty:
return create_placeholder_plot(title=title, message="No topic data found.")
fig, ax = plt.subplots(figsize=(10, 8))
_apply_theme_aware_styling(fig, ax)
colors = plt.cm.get_cmap('YlGnBu')(np.linspace(0.3, 1, len(topic_counts)))
topic_counts.plot(kind='barh', ax=ax, zorder=2, color=colors)
ax.set_title(title, fontsize=14, weight='bold')
ax.set_xlabel('Number of Posts')
ax.set_ylabel('Topic')
TEXT_COLOR = plt.rcParams.get('text.color', '#E5E7EB')
for i, (topic, count) in enumerate(topic_counts.items()):
ax.text(count + (0.01 * topic_counts.max()), i, f' {count}', va='center', ha='left', zorder=3, color=TEXT_COLOR, fontsize=9)
fig.tight_layout(pad=1.5)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date, current_plot_configs):
logging.info(f"Updating analytics plot figures with new styling. Filter: {date_filter_option}")
num_expected_plots = len(current_plot_configs)
# ... (rest of your data loading logic is fine)
if not token_state_value or not token_state_value.get("token"):
message = "❌ Accesso negato. Nessun token. Impossibile generare le analisi."
logging.warning(message)
placeholder_figs = [create_placeholder_plot(title="Accesso Negato") for _ in range(num_expected_plots)]
summaries = {p_cfg["id"]: "Accesso negato, nessun dato per il chatbot." for p_cfg in current_plot_configs}
return [message] + placeholder_figs + [summaries]
try:
(filtered_merged_posts_df, filtered_mentions_df, date_filtered_follower_stats_df,
raw_follower_stats_df, start_dt_for_msg, end_dt_for_msg) = \
prepare_filtered_analytics_data(token_state_value, date_filter_option, custom_start_date, custom_end_date)
plot_data_summaries_for_chatbot = generate_chatbot_data_summaries(
current_plot_configs, filtered_merged_posts_df, filtered_mentions_df,
date_filtered_follower_stats_df, raw_follower_stats_df, token_state_value
)
except Exception as e:
error_msg = f"❌ Errore durante la preparazione dei dati per le analisi: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Errore Preparazione Dati", message=str(e)) for _ in range(num_expected_plots)]
summaries = {p_cfg["id"]: f"Errore preparazione dati: {e}" for p_cfg in current_plot_configs}
return [error_msg] + placeholder_figs + [summaries]
# Map plot IDs to their respective generation functions
plot_functions = {
# Dinamiche dei Follower
"followers_count": lambda: generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'),
"followers_growth_rate": lambda: generate_generic_time_series_plot(date_filtered_follower_stats_df, 'category_name', 'follower_count_organic', 'Follower Growth Rate', 'Growth Rate (%)', color='#A78BFA'), # Simplified for now
"followers_by_location": lambda: generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Follower per Località"),
"followers_by_role": lambda: generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Follower per Ruolo"),
"followers_by_industry": lambda: generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Follower per Settore"),
"followers_by_seniority": lambda: generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Follower per Anzianità"),
# Approfondimenti Performance Post
"engagement_rate": lambda: generate_engagement_rate_over_time_plot(filtered_merged_posts_df),
"reach_over_time": lambda: generate_generic_time_series_plot(filtered_merged_posts_df, 'published_at', 'clickCount', 'Reach Over Time (Clicks)', 'Total Clicks', color='#6EE7B7'),
"impressions_over_time": lambda: generate_generic_time_series_plot(filtered_merged_posts_df, 'published_at', 'impressionCount', 'Impressions Over Time', 'Total Impressions', color='#38BDF8'),
"likes_over_time": lambda: generate_generic_time_series_plot(filtered_merged_posts_df, 'published_at', 'likeCount', 'Reactions (Likes) Over Time', 'Total Likes', color='#FB7185'),
# Engagement Dettagliato Post nel Tempo
"clicks_over_time": lambda: generate_generic_time_series_plot(filtered_merged_posts_df, 'published_at', 'clickCount', 'Clicks Over Time', 'Total Clicks', color='#6EE7B7'),
"shares_over_time": lambda: generate_generic_time_series_plot(filtered_merged_posts_df, 'published_at', 'shareCount', 'Shares Over Time', 'Total Shares', color='#34D399'),
"comments_over_time": lambda: generate_generic_time_series_plot(filtered_merged_posts_df, 'published_at', 'commentCount', 'Comments Over Time', 'Total Comments', color='#FACC15'),
"comments_sentiment": lambda: generate_generic_pie_chart(filtered_merged_posts_df['sentiment'].value_counts().dropna(), "Breakdown of Comments by Sentiment", 'coolwarm'),
# Analisi Strategia Contenuti
"post_frequency_cs": lambda: generate_generic_time_series_plot(filtered_merged_posts_df.resample('D', on='published_at').size().reset_index(name='count'), 'published_at', 'count', 'Post Frequency', 'Number of Posts', color='#C084FC'),
"content_format_breakdown_cs": lambda: generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=token_state_value.get("config_media_type_col", "media_type")),
"content_topic_breakdown_cs": lambda: generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=token_state_value.get("config_eb_labels_col", "li_eb_labels")),
# Analisi Menzioni (Dettaglio)
"mention_analysis_volume": lambda: generate_generic_time_series_plot(
filtered_mentions_df.resample('D', on=token_state_value.get("config_date_col_mentions", "date")).size().reset_index(name='count'),
token_state_value.get("config_date_col_mentions", "date"),
'count',
'Mentions Volume',
'Number of Mentions',
color='#818CF8'
),
"mention_analysis_sentiment": lambda: generate_generic_pie_chart(filtered_mentions_df['sentiment_label'].value_counts().dropna(), "Mention Sentiment Breakdown")
}
logging.info(f"colonne posts df {filtered_merged_posts_df.columns}")
logging.info(f"colonne mentions df {filtered_mentions_df.columns}")
plot_figs = []
for config in current_plot_configs:
plot_id = config["id"]
if plot_id in plot_functions:
try:
fig = plot_functions[plot_id]()
plot_figs.append(fig)
except Exception as e:
logging.error(f"Failed to generate plot for '{plot_id}': {e}", exc_info=True)
plot_figs.append(create_placeholder_plot(title=f"Error: {config.get('label', plot_id)}", message=str(e)))
else:
logging.warning(f"No plot function found for ID: '{plot_id}'")
plot_figs.append(create_placeholder_plot(title=f"Plot Not Implemented: {config.get('label', plot_id)}"))
message = f"📊 Analisi aggiornate per il periodo: {date_filter_option}"
if date_filter_option == "Intervallo Personalizzato":
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "N/A"
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "N/A"
message += f" (Da: {s_display} A: {e_display})"
return [message] + plot_figs + [plot_data_summaries_for_chatbot]
|