|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The ``png`` module can read and write PNG files. |
|
|
|
Installation and Overview |
|
------------------------- |
|
|
|
``pip install pypng`` |
|
|
|
For help, type ``import png; help(png)`` in your python interpreter. |
|
|
|
A good place to start is the :class:`Reader` and :class:`Writer` classes. |
|
|
|
Coverage of PNG formats is fairly complete; |
|
all allowable bit depths (1/2/4/8/16/24/32/48/64 bits per pixel) and |
|
colour combinations are supported: |
|
|
|
- greyscale (1/2/4/8/16 bit); |
|
- RGB, RGBA, LA (greyscale with alpha) with 8/16 bits per channel; |
|
- colour mapped images (1/2/4/8 bit). |
|
|
|
Interlaced images, |
|
which support a progressive display when downloading, |
|
are supported for both reading and writing. |
|
|
|
A number of optional chunks can be specified (when writing) |
|
and understood (when reading): ``tRNS``, ``bKGD``, ``gAMA``. |
|
|
|
The ``sBIT`` chunk can be used to specify precision for |
|
non-native bit depths. |
|
|
|
Requires Python 3.5 or higher. |
|
Installation is trivial, |
|
but see the ``README.txt`` file (with the source distribution) for details. |
|
|
|
Full use of all features will need some reading of the PNG specification |
|
http://www.w3.org/TR/2003/REC-PNG-20031110/. |
|
|
|
The package also comes with command line utilities. |
|
|
|
- ``pripamtopng`` converts |
|
`Netpbm <http://netpbm.sourceforge.net/>`_ PAM/PNM files to PNG; |
|
- ``pripngtopam`` converts PNG to file PAM/PNM. |
|
|
|
There are a few more for simple PNG manipulations. |
|
|
|
Spelling and Terminology |
|
------------------------ |
|
|
|
Generally British English spelling is used in the documentation. |
|
So that's "greyscale" and "colour". |
|
This not only matches the author's native language, |
|
it's also used by the PNG specification. |
|
|
|
Colour Models |
|
------------- |
|
|
|
The major colour models supported by PNG (and hence by PyPNG) are: |
|
|
|
- greyscale; |
|
- greyscale--alpha; |
|
- RGB; |
|
- RGB--alpha. |
|
|
|
Also referred to using the abbreviations: L, LA, RGB, RGBA. |
|
Each letter codes a single channel: |
|
*L* is for Luminance or Luma or Lightness (greyscale images); |
|
*A* stands for Alpha, the opacity channel |
|
(used for transparency effects, but higher values are more opaque, |
|
so it makes sense to call it opacity); |
|
*R*, *G*, *B* stand for Red, Green, Blue (colour image). |
|
|
|
Lists, arrays, sequences, and so on |
|
----------------------------------- |
|
|
|
When getting pixel data out of this module (reading) and |
|
presenting data to this module (writing) there are |
|
a number of ways the data could be represented as a Python value. |
|
|
|
The preferred format is a sequence of *rows*, |
|
which each row being a sequence of *values*. |
|
In this format, the values are in pixel order, |
|
with all the values from all the pixels in a row |
|
being concatenated into a single sequence for that row. |
|
|
|
Consider an image that is 3 pixels wide by 2 pixels high, and each pixel |
|
has RGB components: |
|
|
|
Sequence of rows:: |
|
|
|
list([R,G,B, R,G,B, R,G,B], |
|
[R,G,B, R,G,B, R,G,B]) |
|
|
|
Each row appears as its own list, |
|
but the pixels are flattened so that three values for one pixel |
|
simply follow the three values for the previous pixel. |
|
|
|
This is the preferred because |
|
it provides a good compromise between space and convenience. |
|
PyPNG regards itself as at liberty to replace any sequence type with |
|
any sufficiently compatible other sequence type; |
|
in practice each row is an array (``bytearray`` or ``array.array``). |
|
|
|
To allow streaming the outer list is sometimes |
|
an iterator rather than an explicit list. |
|
|
|
An alternative format is a single array holding all the values. |
|
|
|
Array of values:: |
|
|
|
[R,G,B, R,G,B, R,G,B, |
|
R,G,B, R,G,B, R,G,B] |
|
|
|
The entire image is one single giant sequence of colour values. |
|
Generally an array will be used (to save space), not a list. |
|
|
|
The top row comes first, |
|
and within each row the pixels are ordered from left-to-right. |
|
Within a pixel the values appear in the order R-G-B-A |
|
(or L-A for greyscale--alpha). |
|
|
|
There is another format, which should only be used with caution. |
|
It is mentioned because it is used internally, |
|
is close to what lies inside a PNG file itself, |
|
and has some support from the public API. |
|
This format is called *packed*. |
|
When packed, each row is a sequence of bytes (integers from 0 to 255), |
|
just as it is before PNG scanline filtering is applied. |
|
When the bit depth is 8 this is the same as a sequence of rows; |
|
when the bit depth is less than 8 (1, 2 and 4), |
|
several pixels are packed into each byte; |
|
when the bit depth is 16 each pixel value is decomposed into 2 bytes |
|
(and `packed` is a misnomer). |
|
This format is used by the :meth:`Writer.write_packed` method. |
|
It isn't usually a convenient format, |
|
but may be just right if the source data for |
|
the PNG image comes from something that uses a similar format |
|
(for example, 1-bit BMPs, or another PNG file). |
|
""" |
|
|
|
__version__ = "0.0.20" |
|
|
|
import collections |
|
import io |
|
import itertools |
|
import math |
|
|
|
|
|
import operator |
|
import re |
|
import struct |
|
import sys |
|
|
|
|
|
import warnings |
|
import zlib |
|
|
|
from array import array |
|
|
|
|
|
__all__ = ["Image", "Reader", "Writer", "write_chunks", "from_array"] |
|
|
|
|
|
|
|
|
|
signature = struct.pack("8B", 137, 80, 78, 71, 13, 10, 26, 10) |
|
|
|
|
|
adam7 = ( |
|
(0, 0, 8, 8), |
|
(4, 0, 8, 8), |
|
(0, 4, 4, 8), |
|
(2, 0, 4, 4), |
|
(0, 2, 2, 4), |
|
(1, 0, 2, 2), |
|
(0, 1, 1, 2), |
|
) |
|
|
|
|
|
def adam7_generate(width, height): |
|
""" |
|
Generate the coordinates for the reduced scanlines |
|
of an Adam7 interlaced image |
|
of size `width` by `height` pixels. |
|
|
|
Yields a generator for each pass, |
|
and each pass generator yields a series of (x, y, xstep) triples, |
|
each one identifying a reduced scanline consisting of |
|
pixels starting at (x, y) and taking every xstep pixel to the right. |
|
""" |
|
|
|
for xstart, ystart, xstep, ystep in adam7: |
|
if xstart >= width: |
|
continue |
|
yield ((xstart, y, xstep) for y in range(ystart, height, ystep)) |
|
|
|
|
|
|
|
Resolution = collections.namedtuple("_Resolution", "x y unit_is_meter") |
|
|
|
|
|
def group(s, n): |
|
return list(zip(*[iter(s)] * n)) |
|
|
|
|
|
def isarray(x): |
|
return isinstance(x, array) |
|
|
|
|
|
def check_palette(palette): |
|
""" |
|
Check a palette argument (to the :class:`Writer` class) for validity. |
|
Returns the palette as a list if okay; |
|
raises an exception otherwise. |
|
""" |
|
|
|
|
|
if palette is None: |
|
return None |
|
|
|
p = list(palette) |
|
if not (0 < len(p) <= 256): |
|
raise ProtocolError( |
|
"a palette must have between 1 and 256 entries," |
|
" see https://www.w3.org/TR/PNG/#11PLTE" |
|
) |
|
seen_triple = False |
|
for i, t in enumerate(p): |
|
if len(t) not in (3, 4): |
|
raise ProtocolError("palette entry %d: entries must be 3- or 4-tuples." % i) |
|
if len(t) == 3: |
|
seen_triple = True |
|
if seen_triple and len(t) == 4: |
|
raise ProtocolError( |
|
"palette entry %d: all 4-tuples must precede all 3-tuples" % i |
|
) |
|
for x in t: |
|
if int(x) != x or not (0 <= x <= 255): |
|
raise ProtocolError( |
|
"palette entry %d: " "values must be integer: 0 <= x <= 255" % i |
|
) |
|
return p |
|
|
|
|
|
def check_sizes(size, width, height): |
|
""" |
|
Check that these arguments, if supplied, are consistent. |
|
Return a (width, height) pair. |
|
""" |
|
|
|
if not size: |
|
return width, height |
|
|
|
if len(size) != 2: |
|
raise ProtocolError("size argument should be a pair (width, height)") |
|
if width is not None and width != size[0]: |
|
raise ProtocolError( |
|
"size[0] (%r) and width (%r) should match when both are used." |
|
% (size[0], width) |
|
) |
|
if height is not None and height != size[1]: |
|
raise ProtocolError( |
|
"size[1] (%r) and height (%r) should match when both are used." |
|
% (size[1], height) |
|
) |
|
return size |
|
|
|
|
|
def check_color(c, greyscale, which): |
|
""" |
|
Checks that a colour argument for transparent or background options |
|
is the right form. |
|
Returns the colour |
|
(which, if it's a bare integer, is "corrected" to a 1-tuple). |
|
""" |
|
|
|
if c is None: |
|
return c |
|
if greyscale: |
|
try: |
|
len(c) |
|
except TypeError: |
|
c = (c,) |
|
if len(c) != 1: |
|
raise ProtocolError("%s for greyscale must be 1-tuple" % which) |
|
if not is_natural(c[0]): |
|
raise ProtocolError("%s colour for greyscale must be integer" % which) |
|
else: |
|
if not ( |
|
len(c) == 3 and is_natural(c[0]) and is_natural(c[1]) and is_natural(c[2]) |
|
): |
|
raise ProtocolError("%s colour must be a triple of integers" % which) |
|
return c |
|
|
|
|
|
class Error(Exception): |
|
def __str__(self): |
|
return self.__class__.__name__ + ": " + " ".join(self.args) |
|
|
|
|
|
class FormatError(Error): |
|
""" |
|
Problem with input file format. |
|
In other words, PNG file does not conform to |
|
the specification in some way and is invalid. |
|
""" |
|
|
|
|
|
class ProtocolError(Error): |
|
""" |
|
Problem with the way the programming interface has been used, |
|
or the data presented to it. |
|
""" |
|
|
|
|
|
class ChunkError(FormatError): |
|
pass |
|
|
|
|
|
class Default: |
|
"""The default for the greyscale paramter.""" |
|
|
|
|
|
class Writer: |
|
""" |
|
PNG encoder in pure Python. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
width=None, |
|
height=None, |
|
size=None, |
|
greyscale=Default, |
|
alpha=False, |
|
bitdepth=8, |
|
palette=None, |
|
transparent=None, |
|
background=None, |
|
gamma=None, |
|
compression=None, |
|
interlace=False, |
|
planes=None, |
|
colormap=None, |
|
maxval=None, |
|
chunk_limit=2**20, |
|
x_pixels_per_unit=None, |
|
y_pixels_per_unit=None, |
|
unit_is_meter=False, |
|
): |
|
""" |
|
Create a PNG encoder object. |
|
|
|
Arguments: |
|
|
|
width, height |
|
Image size in pixels, as two separate arguments. |
|
size |
|
Image size (w,h) in pixels, as single argument. |
|
greyscale |
|
Pixels are greyscale, not RGB. |
|
alpha |
|
Input data has alpha channel (RGBA or LA). |
|
bitdepth |
|
Bit depth: from 1 to 16 (for each channel). |
|
palette |
|
Create a palette for a colour mapped image (colour type 3). |
|
transparent |
|
Specify a transparent colour (create a ``tRNS`` chunk). |
|
background |
|
Specify a default background colour (create a ``bKGD`` chunk). |
|
gamma |
|
Specify a gamma value (create a ``gAMA`` chunk). |
|
compression |
|
zlib compression level: 0 (none) to 9 (more compressed); |
|
default: -1 or None. |
|
interlace |
|
Create an interlaced image. |
|
chunk_limit |
|
Write multiple ``IDAT`` chunks to save memory. |
|
x_pixels_per_unit |
|
Number of pixels a unit along the x axis (write a |
|
`pHYs` chunk). |
|
y_pixels_per_unit |
|
Number of pixels a unit along the y axis (write a |
|
`pHYs` chunk). Along with `x_pixel_unit`, this gives |
|
the pixel size ratio. |
|
unit_is_meter |
|
`True` to indicate that the unit (for the `pHYs` |
|
chunk) is metre. |
|
|
|
The image size (in pixels) can be specified either by using the |
|
`width` and `height` arguments, or with the single `size` |
|
argument. |
|
If `size` is used it should be a pair (*width*, *height*). |
|
|
|
The `greyscale` argument indicates whether input pixels |
|
are greyscale (when true), or colour (when false). |
|
The default is true unless `palette=` is used. |
|
|
|
The `alpha` argument (a boolean) specifies |
|
whether input pixels have an alpha channel (or not). |
|
|
|
`bitdepth` specifies the bit depth of the source pixel values. |
|
Each channel may have a different bit depth. |
|
Each source pixel must have values that are |
|
an integer between 0 and ``2**bitdepth-1``, where |
|
`bitdepth` is the bit depth for the corresponding channel. |
|
For example, 8-bit images have values between 0 and 255. |
|
PNG only stores images with bit depths of |
|
1,2,4,8, or 16 (the same for all channels). |
|
When `bitdepth` is not one of these values or where |
|
channels have different bit depths, |
|
the next highest valid bit depth is selected, |
|
and an ``sBIT`` (significant bits) chunk is generated |
|
that specifies the original precision of the source image. |
|
In this case the supplied pixel values will be rescaled to |
|
fit the range of the selected bit depth. |
|
|
|
The PNG file format supports many bit depth / colour model |
|
combinations, but not all. |
|
The details are somewhat arcane |
|
(refer to the PNG specification for full details). |
|
Briefly: |
|
Bit depths < 8 (1,2,4) are only allowed with greyscale and |
|
colour mapped images; |
|
colour mapped images cannot have bit depth 16. |
|
|
|
For colour mapped images |
|
(in other words, when the `palette` argument is specified) |
|
the `bitdepth` argument must match one of |
|
the valid PNG bit depths: 1, 2, 4, or 8. |
|
(It is valid to have a PNG image with a palette and |
|
an ``sBIT`` chunk, but the meaning is slightly different; |
|
it would be awkward to use the `bitdepth` argument for this.) |
|
|
|
The `palette` option, when specified, |
|
causes a colour mapped image to be created: |
|
the PNG colour type is set to 3; |
|
`greyscale` must not be true; `alpha` must not be true; |
|
`transparent` must not be set. |
|
The bit depth must be 1,2,4, or 8. |
|
When a colour mapped image is created, |
|
the pixel values are palette indexes and |
|
the `bitdepth` argument specifies the size of these indexes |
|
(not the size of the colour values in the palette). |
|
|
|
The palette argument value should be a sequence of 3- or |
|
4-tuples. |
|
3-tuples specify RGB palette entries; |
|
4-tuples specify RGBA palette entries. |
|
All the 4-tuples (if present) must come before all the 3-tuples. |
|
A ``PLTE`` chunk is created; |
|
if there are 4-tuples then a ``tRNS`` chunk is created as well. |
|
The ``PLTE`` chunk will contain all the RGB triples in the same |
|
sequence; |
|
the ``tRNS`` chunk will contain the alpha channel for |
|
all the 4-tuples, in the same sequence. |
|
Palette entries are always 8-bit. |
|
|
|
If specified, the `transparent` and `background` parameters must be |
|
a tuple with one element for each channel in the image. |
|
Either a 3-tuple of integer (RGB) values for a colour image, or |
|
a 1-tuple of a single integer for a greyscale image. |
|
|
|
If specified, the `gamma` parameter must be a positive number |
|
(generally, a `float`). |
|
A ``gAMA`` chunk will be created. |
|
Note that this will not change the values of the pixels as |
|
they appear in the PNG file, |
|
they are assumed to have already |
|
been converted appropriately for the gamma specified. |
|
|
|
The `compression` argument specifies the compression level to |
|
be used by the ``zlib`` module. |
|
Values from 1 to 9 (highest) specify compression. |
|
0 means no compression. |
|
-1 and ``None`` both mean that the ``zlib`` module uses |
|
the default level of compession (which is generally acceptable). |
|
|
|
If `interlace` is true then an interlaced image is created |
|
(using PNG's so far only interace method, *Adam7*). |
|
This does not affect how the pixels should be passed in, |
|
rather it changes how they are arranged into the PNG file. |
|
On slow connexions interlaced images can be |
|
partially decoded by the browser to give |
|
a rough view of the image that is |
|
successively refined as more image data appears. |
|
|
|
.. note :: |
|
|
|
Enabling the `interlace` option requires the entire image |
|
to be processed in working memory. |
|
|
|
`chunk_limit` is used to limit the amount of memory used whilst |
|
compressing the image. |
|
In order to avoid using large amounts of memory, |
|
multiple ``IDAT`` chunks may be created. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
width, height = check_sizes(size, width, height) |
|
del size |
|
|
|
if not is_natural(width) or not is_natural(height): |
|
raise ProtocolError("width and height must be integers") |
|
if width <= 0 or height <= 0: |
|
raise ProtocolError("width and height must be greater than zero") |
|
|
|
if width > 2**31 - 1 or height > 2**31 - 1: |
|
raise ProtocolError("width and height cannot exceed 2**31-1") |
|
|
|
if alpha and transparent is not None: |
|
raise ProtocolError("transparent colour not allowed with alpha channel") |
|
|
|
|
|
|
|
try: |
|
len(bitdepth) |
|
except TypeError: |
|
bitdepth = (bitdepth,) |
|
for b in bitdepth: |
|
valid = is_natural(b) and 1 <= b <= 16 |
|
if not valid: |
|
raise ProtocolError( |
|
"each bitdepth %r must be a positive integer <= 16" % (bitdepth,) |
|
) |
|
|
|
|
|
|
|
palette = check_palette(palette) |
|
alpha = bool(alpha) |
|
colormap = bool(palette) |
|
if greyscale is Default and palette: |
|
greyscale = False |
|
greyscale = bool(greyscale) |
|
if colormap: |
|
color_planes = 1 |
|
planes = 1 |
|
else: |
|
color_planes = (3, 1)[greyscale] |
|
planes = color_planes + alpha |
|
if len(bitdepth) == 1: |
|
bitdepth *= planes |
|
|
|
bitdepth, self.rescale = check_bitdepth_rescale( |
|
palette, bitdepth, transparent, alpha, greyscale |
|
) |
|
|
|
|
|
|
|
if bitdepth < 8: |
|
assert greyscale or palette |
|
assert not alpha |
|
if bitdepth > 8: |
|
assert not palette |
|
|
|
transparent = check_color(transparent, greyscale, "transparent") |
|
background = check_color(background, greyscale, "background") |
|
|
|
|
|
|
|
|
|
self.width = width |
|
self.height = height |
|
self.transparent = transparent |
|
self.background = background |
|
self.gamma = gamma |
|
self.greyscale = greyscale |
|
self.alpha = alpha |
|
self.colormap = colormap |
|
self.bitdepth = int(bitdepth) |
|
self.compression = compression |
|
self.chunk_limit = chunk_limit |
|
self.interlace = bool(interlace) |
|
self.palette = palette |
|
self.x_pixels_per_unit = x_pixels_per_unit |
|
self.y_pixels_per_unit = y_pixels_per_unit |
|
self.unit_is_meter = bool(unit_is_meter) |
|
|
|
self.color_type = 4 * self.alpha + 2 * (not greyscale) + 1 * self.colormap |
|
assert self.color_type in (0, 2, 3, 4, 6) |
|
|
|
self.color_planes = color_planes |
|
self.planes = planes |
|
|
|
self.psize = (self.bitdepth / 8) * self.planes |
|
|
|
def write(self, outfile, rows): |
|
""" |
|
Write a PNG image to the output file. |
|
`rows` should be an iterable that yields each row |
|
(each row is a sequence of values). |
|
The rows should be the rows of the original image, |
|
so there should be ``self.height`` rows of |
|
``self.width * self.planes`` values. |
|
If `interlace` is specified (when creating the instance), |
|
then an interlaced PNG file will be written. |
|
Supply the rows in the normal image order; |
|
the interlacing is carried out internally. |
|
|
|
.. note :: |
|
|
|
Interlacing requires the entire image to be in working memory. |
|
""" |
|
|
|
|
|
vpr = self.width * self.planes |
|
|
|
def check_rows(rows): |
|
""" |
|
Yield each row in rows, |
|
but check each row first (for correct width). |
|
""" |
|
for i, row in enumerate(rows): |
|
try: |
|
wrong_length = len(row) != vpr |
|
except TypeError: |
|
|
|
|
|
|
|
wrong_length = False |
|
if wrong_length: |
|
|
|
raise ProtocolError( |
|
"Expected %d values but got %d values, in row %d" |
|
% (vpr, len(row), i) |
|
) |
|
yield row |
|
|
|
if self.interlace: |
|
fmt = "BH"[self.bitdepth > 8] |
|
a = array(fmt, itertools.chain(*check_rows(rows))) |
|
return self.write_array(outfile, a) |
|
|
|
nrows = self.write_passes(outfile, check_rows(rows)) |
|
if nrows != self.height: |
|
raise ProtocolError( |
|
"rows supplied (%d) does not match height (%d)" % (nrows, self.height) |
|
) |
|
|
|
def write_passes(self, outfile, rows): |
|
""" |
|
Write a PNG image to the output file. |
|
|
|
Most users are expected to find the :meth:`write` or |
|
:meth:`write_array` method more convenient. |
|
|
|
The rows should be given to this method in the order that |
|
they appear in the output file. |
|
For straightlaced images, this is the usual top to bottom ordering. |
|
For interlaced images the rows should have been interlaced before |
|
passing them to this function. |
|
|
|
`rows` should be an iterable that yields each row |
|
(each row being a sequence of values). |
|
""" |
|
|
|
|
|
|
|
|
|
if self.rescale: |
|
rows = rescale_rows(rows, self.rescale) |
|
|
|
if self.bitdepth < 8: |
|
rows = pack_rows(rows, self.bitdepth) |
|
elif self.bitdepth == 16: |
|
rows = unpack_rows(rows) |
|
|
|
return self.write_packed(outfile, rows) |
|
|
|
def write_packed(self, outfile, rows): |
|
""" |
|
Write PNG file to `outfile`. |
|
`rows` should be an iterator that yields each packed row; |
|
a packed row being a sequence of packed bytes. |
|
|
|
The rows have a filter byte prefixed and |
|
are then compressed into one or more IDAT chunks. |
|
They are not processed any further, |
|
so if bitdepth is other than 1, 2, 4, 8, 16, |
|
the pixel values should have been scaled |
|
before passing them to this method. |
|
|
|
This method does work for interlaced images but it is best avoided. |
|
For interlaced images, the rows should be |
|
presented in the order that they appear in the file. |
|
""" |
|
|
|
self.write_preamble(outfile) |
|
|
|
|
|
if self.compression is not None: |
|
compressor = zlib.compressobj(self.compression) |
|
else: |
|
compressor = zlib.compressobj() |
|
|
|
|
|
|
|
data = bytearray() |
|
|
|
for i, row in enumerate(rows): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data.append(0) |
|
data.extend(row) |
|
if len(data) > self.chunk_limit: |
|
compressed = compressor.compress(data) |
|
if len(compressed): |
|
write_chunk(outfile, b"IDAT", compressed) |
|
data = bytearray() |
|
|
|
compressed = compressor.compress(bytes(data)) |
|
flushed = compressor.flush() |
|
if len(compressed) or len(flushed): |
|
write_chunk(outfile, b"IDAT", compressed + flushed) |
|
|
|
write_chunk(outfile, b"IEND") |
|
return i + 1 |
|
|
|
def write_preamble(self, outfile): |
|
|
|
outfile.write(signature) |
|
|
|
|
|
write_chunk( |
|
outfile, |
|
b"IHDR", |
|
struct.pack( |
|
"!2I5B", |
|
self.width, |
|
self.height, |
|
self.bitdepth, |
|
self.color_type, |
|
0, |
|
0, |
|
self.interlace, |
|
), |
|
) |
|
|
|
|
|
|
|
if self.gamma is not None: |
|
write_chunk( |
|
outfile, b"gAMA", struct.pack("!L", int(round(self.gamma * 1e5))) |
|
) |
|
|
|
|
|
|
|
if self.rescale: |
|
write_chunk( |
|
outfile, |
|
b"sBIT", |
|
struct.pack("%dB" % self.planes, *[s[0] for s in self.rescale]), |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.palette: |
|
p, t = make_palette_chunks(self.palette) |
|
write_chunk(outfile, b"PLTE", p) |
|
if t: |
|
|
|
|
|
write_chunk(outfile, b"tRNS", t) |
|
|
|
|
|
if self.transparent is not None: |
|
if self.greyscale: |
|
fmt = "!1H" |
|
else: |
|
fmt = "!3H" |
|
write_chunk(outfile, b"tRNS", struct.pack(fmt, *self.transparent)) |
|
|
|
|
|
if self.background is not None: |
|
if self.greyscale: |
|
fmt = "!1H" |
|
else: |
|
fmt = "!3H" |
|
write_chunk(outfile, b"bKGD", struct.pack(fmt, *self.background)) |
|
|
|
|
|
if self.x_pixels_per_unit is not None and self.y_pixels_per_unit is not None: |
|
tup = ( |
|
self.x_pixels_per_unit, |
|
self.y_pixels_per_unit, |
|
int(self.unit_is_meter), |
|
) |
|
write_chunk(outfile, b"pHYs", struct.pack("!LLB", *tup)) |
|
|
|
def write_array(self, outfile, pixels): |
|
""" |
|
Write an array that holds all the image values |
|
as a PNG file on the output file. |
|
See also :meth:`write` method. |
|
""" |
|
|
|
if self.interlace: |
|
if type(pixels) != array: |
|
|
|
fmt = "BH"[self.bitdepth > 8] |
|
pixels = array(fmt, pixels) |
|
self.write_passes(outfile, self.array_scanlines_interlace(pixels)) |
|
else: |
|
self.write_passes(outfile, self.array_scanlines(pixels)) |
|
|
|
def array_scanlines(self, pixels): |
|
""" |
|
Generates rows (each a sequence of values) from |
|
a single array of values. |
|
""" |
|
|
|
|
|
vpr = self.width * self.planes |
|
stop = 0 |
|
for y in range(self.height): |
|
start = stop |
|
stop = start + vpr |
|
yield pixels[start:stop] |
|
|
|
def array_scanlines_interlace(self, pixels): |
|
""" |
|
Generator for interlaced scanlines from an array. |
|
`pixels` is the full source image as a single array of values. |
|
The generator yields each scanline of the reduced passes in turn, |
|
each scanline being a sequence of values. |
|
""" |
|
|
|
|
|
|
|
fmt = "BH"[self.bitdepth > 8] |
|
|
|
vpr = self.width * self.planes |
|
|
|
|
|
|
|
for lines in adam7_generate(self.width, self.height): |
|
for x, y, xstep in lines: |
|
|
|
ppr = int(math.ceil((self.width - x) / float(xstep))) |
|
|
|
reduced_row_len = ppr * self.planes |
|
if xstep == 1: |
|
|
|
offset = y * vpr |
|
yield pixels[offset : offset + vpr] |
|
continue |
|
|
|
|
|
|
|
row = array(fmt) |
|
|
|
row.extend(pixels[0:reduced_row_len]) |
|
offset = y * vpr + x * self.planes |
|
end_offset = (y + 1) * vpr |
|
skip = self.planes * xstep |
|
for i in range(self.planes): |
|
row[i :: self.planes] = pixels[offset + i : end_offset : skip] |
|
yield row |
|
|
|
|
|
def write_chunk(outfile, tag, data=b""): |
|
""" |
|
Write a PNG chunk to the output file, including length and |
|
checksum. |
|
""" |
|
|
|
data = bytes(data) |
|
|
|
outfile.write(struct.pack("!I", len(data))) |
|
outfile.write(tag) |
|
outfile.write(data) |
|
checksum = zlib.crc32(tag) |
|
checksum = zlib.crc32(data, checksum) |
|
checksum &= 2**32 - 1 |
|
outfile.write(struct.pack("!I", checksum)) |
|
|
|
|
|
def write_chunks(out, chunks): |
|
"""Create a PNG file by writing out the chunks.""" |
|
|
|
out.write(signature) |
|
for chunk in chunks: |
|
write_chunk(out, *chunk) |
|
|
|
|
|
def rescale_rows(rows, rescale): |
|
""" |
|
Take each row in rows (an iterator) and yield |
|
a fresh row with the pixels scaled according to |
|
the rescale parameters in the list `rescale`. |
|
Each element of `rescale` is a tuple of |
|
(source_bitdepth, target_bitdepth), |
|
with one element per channel. |
|
""" |
|
|
|
|
|
fs = [float(2 ** s[1] - 1) / float(2 ** s[0] - 1) for s in rescale] |
|
|
|
|
|
target_bitdepths = set(s[1] for s in rescale) |
|
assert len(target_bitdepths) == 1 |
|
(target_bitdepth,) = target_bitdepths |
|
typecode = "BH"[target_bitdepth > 8] |
|
|
|
|
|
n_chans = len(rescale) |
|
|
|
for row in rows: |
|
rescaled_row = array(typecode, iter(row)) |
|
for i in range(n_chans): |
|
channel = array(typecode, (int(round(fs[i] * x)) for x in row[i::n_chans])) |
|
rescaled_row[i::n_chans] = channel |
|
yield rescaled_row |
|
|
|
|
|
def pack_rows(rows, bitdepth): |
|
"""Yield packed rows that are a byte array. |
|
Each byte is packed with the values from several pixels. |
|
""" |
|
|
|
assert bitdepth < 8 |
|
assert 8 % bitdepth == 0 |
|
|
|
|
|
spb = int(8 / bitdepth) |
|
|
|
def make_byte(block): |
|
"""Take a block of (2, 4, or 8) values, |
|
and pack them into a single byte. |
|
""" |
|
|
|
res = 0 |
|
for v in block: |
|
res = (res << bitdepth) + v |
|
return res |
|
|
|
for row in rows: |
|
a = bytearray(row) |
|
|
|
|
|
n = float(len(a)) |
|
extra = math.ceil(n / spb) * spb - n |
|
a.extend([0] * int(extra)) |
|
|
|
|
|
blocks = group(a, spb) |
|
yield bytearray(make_byte(block) for block in blocks) |
|
|
|
|
|
def unpack_rows(rows): |
|
"""Unpack each row from being 16-bits per value, |
|
to being a sequence of bytes. |
|
""" |
|
for row in rows: |
|
fmt = "!%dH" % len(row) |
|
yield bytearray(struct.pack(fmt, *row)) |
|
|
|
|
|
def make_palette_chunks(palette): |
|
""" |
|
Create the byte sequences for a ``PLTE`` and |
|
if necessary a ``tRNS`` chunk. |
|
Returned as a pair (*p*, *t*). |
|
*t* will be ``None`` if no ``tRNS`` chunk is necessary. |
|
""" |
|
|
|
p = bytearray() |
|
t = bytearray() |
|
|
|
for x in palette: |
|
p.extend(x[0:3]) |
|
if len(x) > 3: |
|
t.append(x[3]) |
|
if t: |
|
return p, t |
|
return p, None |
|
|
|
|
|
def check_bitdepth_rescale(palette, bitdepth, transparent, alpha, greyscale): |
|
""" |
|
Returns (bitdepth, rescale) pair. |
|
""" |
|
|
|
if palette: |
|
if len(bitdepth) != 1: |
|
raise ProtocolError("with palette, only a single bitdepth may be used") |
|
(bitdepth,) = bitdepth |
|
if bitdepth not in (1, 2, 4, 8): |
|
raise ProtocolError("with palette, bitdepth must be 1, 2, 4, or 8") |
|
if transparent is not None: |
|
raise ProtocolError("transparent and palette not compatible") |
|
if alpha: |
|
raise ProtocolError("alpha and palette not compatible") |
|
if greyscale: |
|
raise ProtocolError("greyscale and palette not compatible") |
|
return bitdepth, None |
|
|
|
|
|
|
|
if greyscale and not alpha: |
|
|
|
(bitdepth,) = bitdepth |
|
if bitdepth in (1, 2, 4, 8, 16): |
|
return bitdepth, None |
|
if bitdepth > 8: |
|
targetbitdepth = 16 |
|
elif bitdepth == 3: |
|
targetbitdepth = 4 |
|
else: |
|
assert bitdepth in (5, 6, 7) |
|
targetbitdepth = 8 |
|
return targetbitdepth, [(bitdepth, targetbitdepth)] |
|
|
|
assert alpha or not greyscale |
|
|
|
depth_set = tuple(set(bitdepth)) |
|
if depth_set in [(8,), (16,)]: |
|
|
|
(bitdepth,) = depth_set |
|
return bitdepth, None |
|
|
|
targetbitdepth = (8, 16)[max(bitdepth) > 8] |
|
return targetbitdepth, [(b, targetbitdepth) for b in bitdepth] |
|
|
|
|
|
|
|
RegexModeDecode = re.compile("(LA?|RGBA?);?([0-9]*)", flags=re.IGNORECASE) |
|
|
|
|
|
def from_array(a, mode=None, info={}): |
|
""" |
|
Create a PNG :class:`Image` object from a 2-dimensional array. |
|
One application of this function is easy PIL-style saving: |
|
``png.from_array(pixels, 'L').save('foo.png')``. |
|
|
|
Unless they are specified using the *info* parameter, |
|
the PNG's height and width are taken from the array size. |
|
The first axis is the height; the second axis is the |
|
ravelled width and channel index. |
|
The array is treated is a sequence of rows, |
|
each row being a sequence of values (``width*channels`` in number). |
|
So an RGB image that is 16 pixels high and 8 wide will |
|
occupy a 2-dimensional array that is 16x24 |
|
(each row will be 8*3 = 24 sample values). |
|
|
|
*mode* is a string that specifies the image colour format in a |
|
PIL-style mode. It can be: |
|
|
|
``'L'`` |
|
greyscale (1 channel) |
|
``'LA'`` |
|
greyscale with alpha (2 channel) |
|
``'RGB'`` |
|
colour image (3 channel) |
|
``'RGBA'`` |
|
colour image with alpha (4 channel) |
|
|
|
The mode string can also specify the bit depth |
|
(overriding how this function normally derives the bit depth, |
|
see below). |
|
Appending ``';16'`` to the mode will cause the PNG to be |
|
16 bits per channel; |
|
any decimal from 1 to 16 can be used to specify the bit depth. |
|
|
|
When a 2-dimensional array is used *mode* determines how many |
|
channels the image has, and so allows the width to be derived from |
|
the second array dimension. |
|
|
|
The array is expected to be a ``numpy`` array, |
|
but it can be any suitable Python sequence. |
|
For example, a list of lists can be used: |
|
``png.from_array([[0, 255, 0], [255, 0, 255]], 'L')``. |
|
The exact rules are: ``len(a)`` gives the first dimension, height; |
|
``len(a[0])`` gives the second dimension. |
|
It's slightly more complicated than that because |
|
an iterator of rows can be used, and it all still works. |
|
Using an iterator allows data to be streamed efficiently. |
|
|
|
The bit depth of the PNG is normally taken from |
|
the array element's datatype |
|
(but if *mode* specifies a bitdepth then that is used instead). |
|
The array element's datatype is determined in a way which |
|
is supposed to work both for ``numpy`` arrays and for Python |
|
``array.array`` objects. |
|
A 1 byte datatype will give a bit depth of 8, |
|
a 2 byte datatype will give a bit depth of 16. |
|
If the datatype does not have an implicit size, |
|
like the above example where it is a plain Python list of lists, |
|
then a default of 8 is used. |
|
|
|
The *info* parameter is a dictionary that can |
|
be used to specify metadata (in the same style as |
|
the arguments to the :class:`png.Writer` class). |
|
For this function the keys that are useful are: |
|
|
|
height |
|
overrides the height derived from the array dimensions and |
|
allows *a* to be an iterable. |
|
width |
|
overrides the width derived from the array dimensions. |
|
bitdepth |
|
overrides the bit depth derived from the element datatype |
|
(but must match *mode* if that also specifies a bit depth). |
|
|
|
Generally anything specified in the *info* dictionary will |
|
override any implicit choices that this function would otherwise make, |
|
but must match any explicit ones. |
|
For example, if the *info* dictionary has a ``greyscale`` key then |
|
this must be true when mode is ``'L'`` or ``'LA'`` and |
|
false when mode is ``'RGB'`` or ``'RGBA'``. |
|
""" |
|
|
|
|
|
|
|
info = dict(info) |
|
|
|
|
|
match = RegexModeDecode.match(mode) |
|
if not match: |
|
raise Error("mode string should be 'RGB' or 'L;16' or similar.") |
|
|
|
mode, bitdepth = match.groups() |
|
if bitdepth: |
|
bitdepth = int(bitdepth) |
|
|
|
|
|
if "greyscale" in info: |
|
if bool(info["greyscale"]) != ("L" in mode): |
|
raise ProtocolError("info['greyscale'] should match mode.") |
|
info["greyscale"] = "L" in mode |
|
|
|
alpha = "A" in mode |
|
if "alpha" in info: |
|
if bool(info["alpha"]) != alpha: |
|
raise ProtocolError("info['alpha'] should match mode.") |
|
info["alpha"] = alpha |
|
|
|
|
|
if bitdepth: |
|
if info.get("bitdepth") and bitdepth != info["bitdepth"]: |
|
raise ProtocolError( |
|
"bitdepth (%d) should match bitdepth of info (%d)." |
|
% (bitdepth, info["bitdepth"]) |
|
) |
|
info["bitdepth"] = bitdepth |
|
|
|
|
|
|
|
width, height = check_sizes(info.get("size"), info.get("width"), info.get("height")) |
|
if width: |
|
info["width"] = width |
|
if height: |
|
info["height"] = height |
|
|
|
if "height" not in info: |
|
try: |
|
info["height"] = len(a) |
|
except TypeError: |
|
raise ProtocolError("len(a) does not work, supply info['height'] instead.") |
|
|
|
planes = len(mode) |
|
if "planes" in info: |
|
if info["planes"] != planes: |
|
raise Error("info['planes'] should match mode.") |
|
|
|
|
|
|
|
|
|
a, t = itertools.tee(a) |
|
row = next(t) |
|
del t |
|
|
|
testelement = row |
|
if "width" not in info: |
|
width = len(row) // planes |
|
info["width"] = width |
|
|
|
if "bitdepth" not in info: |
|
try: |
|
dtype = testelement.dtype |
|
|
|
except AttributeError: |
|
try: |
|
|
|
bitdepth = 8 * testelement.itemsize |
|
except AttributeError: |
|
|
|
|
|
bitdepth = 8 |
|
else: |
|
|
|
|
|
if dtype.kind == "b": |
|
bitdepth = 1 |
|
else: |
|
bitdepth = 8 * dtype.itemsize |
|
info["bitdepth"] = bitdepth |
|
|
|
for thing in ["width", "height", "bitdepth", "greyscale", "alpha"]: |
|
assert thing in info |
|
|
|
return Image(a, info) |
|
|
|
|
|
|
|
fromarray = from_array |
|
|
|
|
|
class Image: |
|
"""A PNG image. You can create an :class:`Image` object from |
|
an array of pixels by calling :meth:`png.from_array`. It can be |
|
saved to disk with the :meth:`save` method. |
|
""" |
|
|
|
def __init__(self, rows, info): |
|
""" |
|
.. note :: |
|
|
|
The constructor is not public. Please do not call it. |
|
""" |
|
|
|
self.rows = rows |
|
self.info = info |
|
|
|
def save(self, file): |
|
"""Save the image to the named *file*. |
|
|
|
See `.write()` if you already have an open file object. |
|
|
|
In general, you can only call this method once; |
|
after it has been called the first time the PNG image is written, |
|
the source data will have been streamed, and |
|
cannot be streamed again. |
|
""" |
|
|
|
w = Writer(**self.info) |
|
|
|
with open(file, "wb") as fd: |
|
w.write(fd, self.rows) |
|
|
|
def write(self, file): |
|
"""Write the image to the open file object. |
|
|
|
See `.save()` if you have a filename. |
|
|
|
In general, you can only call this method once; |
|
after it has been called the first time the PNG image is written, |
|
the source data will have been streamed, and |
|
cannot be streamed again. |
|
""" |
|
|
|
w = Writer(**self.info) |
|
w.write(file, self.rows) |
|
|
|
|
|
class Reader: |
|
""" |
|
Pure Python PNG decoder in pure Python. |
|
""" |
|
|
|
def __init__(self, _guess=None, filename=None, file=None, bytes=None): |
|
""" |
|
The constructor expects exactly one keyword argument. |
|
If you supply a positional argument instead, |
|
it will guess the input type. |
|
Choose from the following keyword arguments: |
|
|
|
filename |
|
Name of input file (a PNG file). |
|
file |
|
A file-like object (object with a read() method). |
|
bytes |
|
``bytes`` or ``bytearray`` with PNG data. |
|
|
|
""" |
|
keywords_supplied = ( |
|
(_guess is not None) |
|
+ (filename is not None) |
|
+ (file is not None) |
|
+ (bytes is not None) |
|
) |
|
if keywords_supplied != 1: |
|
raise TypeError("Reader() takes exactly 1 argument") |
|
|
|
|
|
self.signature = None |
|
self.transparent = None |
|
|
|
|
|
|
|
|
|
self.atchunk = None |
|
|
|
if _guess is not None: |
|
if isarray(_guess): |
|
bytes = _guess |
|
elif isinstance(_guess, str): |
|
filename = _guess |
|
elif hasattr(_guess, "read"): |
|
file = _guess |
|
|
|
if bytes is not None: |
|
self.file = io.BytesIO(bytes) |
|
elif filename is not None: |
|
self.file = open(filename, "rb") |
|
elif file is not None: |
|
self.file = file |
|
else: |
|
raise ProtocolError("expecting filename, file or bytes array") |
|
|
|
def chunk(self, lenient=False): |
|
""" |
|
Read the next PNG chunk from the input file; |
|
returns a (*type*, *data*) tuple. |
|
*type* is the chunk's type as a byte string |
|
(all PNG chunk types are 4 bytes long). |
|
*data* is the chunk's data content, as a byte string. |
|
|
|
If the optional `lenient` argument evaluates to `True`, |
|
checksum failures will raise warnings rather than exceptions. |
|
""" |
|
|
|
self.validate_signature() |
|
|
|
|
|
if not self.atchunk: |
|
self.atchunk = self._chunk_len_type() |
|
if not self.atchunk: |
|
raise ChunkError("No more chunks.") |
|
length, type = self.atchunk |
|
self.atchunk = None |
|
|
|
data = self.file.read(length) |
|
if len(data) != length: |
|
raise ChunkError( |
|
"Chunk %s too short for required %i octets." % (type, length) |
|
) |
|
checksum = self.file.read(4) |
|
if len(checksum) != 4: |
|
raise ChunkError("Chunk %s too short for checksum." % type) |
|
verify = zlib.crc32(type) |
|
verify = zlib.crc32(data, verify) |
|
verify = struct.pack("!I", verify) |
|
if checksum != verify: |
|
(a,) = struct.unpack("!I", checksum) |
|
(b,) = struct.unpack("!I", verify) |
|
message = "Checksum error in %s chunk: 0x%08X != 0x%08X." % ( |
|
type.decode("ascii"), |
|
a, |
|
b, |
|
) |
|
if lenient: |
|
warnings.warn(message, RuntimeWarning) |
|
else: |
|
raise ChunkError(message) |
|
return type, data |
|
|
|
def chunks(self): |
|
"""Return an iterator that will yield each chunk as a |
|
(*chunktype*, *content*) pair. |
|
""" |
|
|
|
while True: |
|
t, v = self.chunk() |
|
yield t, v |
|
if t == b"IEND": |
|
break |
|
|
|
def undo_filter(self, filter_type, scanline, previous): |
|
""" |
|
Undo the filter for a scanline. |
|
`scanline` is a sequence of bytes that |
|
does not include the initial filter type byte. |
|
`previous` is decoded previous scanline |
|
(for straightlaced images this is the previous pixel row, |
|
but for interlaced images, it is |
|
the previous scanline in the reduced image, |
|
which in general is not the previous pixel row in the final image). |
|
When there is no previous scanline |
|
(the first row of a straightlaced image, |
|
or the first row in one of the passes in an interlaced image), |
|
then this argument should be ``None``. |
|
|
|
The scanline will have the effects of filtering removed; |
|
the result will be returned as a fresh sequence of bytes. |
|
""" |
|
|
|
|
|
result = scanline |
|
|
|
if filter_type == 0: |
|
return result |
|
|
|
if filter_type not in (1, 2, 3, 4): |
|
raise FormatError( |
|
"Invalid PNG Filter Type. " |
|
"See http://www.w3.org/TR/2003/REC-PNG-20031110/#9Filters ." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
fu = max(1, self.psize) |
|
|
|
|
|
|
|
|
|
|
|
if not previous: |
|
previous = bytearray([0] * len(scanline)) |
|
|
|
|
|
|
|
fn = ( |
|
None, |
|
undo_filter_sub, |
|
undo_filter_up, |
|
undo_filter_average, |
|
undo_filter_paeth, |
|
)[filter_type] |
|
fn(fu, scanline, previous, result) |
|
return result |
|
|
|
def _deinterlace(self, raw): |
|
""" |
|
Read raw pixel data, undo filters, deinterlace, and flatten. |
|
Return a single array of values. |
|
""" |
|
|
|
|
|
vpr = self.width * self.planes |
|
|
|
|
|
vpi = vpr * self.height |
|
|
|
|
|
|
|
if self.bitdepth > 8: |
|
a = array("H", [0] * vpi) |
|
else: |
|
a = bytearray([0] * vpi) |
|
source_offset = 0 |
|
|
|
for lines in adam7_generate(self.width, self.height): |
|
|
|
|
|
|
|
recon = None |
|
for x, y, xstep in lines: |
|
|
|
ppr = int(math.ceil((self.width - x) / float(xstep))) |
|
|
|
row_size = int(math.ceil(self.psize * ppr)) |
|
|
|
filter_type = raw[source_offset] |
|
source_offset += 1 |
|
scanline = raw[source_offset : source_offset + row_size] |
|
source_offset += row_size |
|
recon = self.undo_filter(filter_type, scanline, recon) |
|
|
|
flat = self._bytes_to_values(recon, width=ppr) |
|
if xstep == 1: |
|
assert x == 0 |
|
offset = y * vpr |
|
a[offset : offset + vpr] = flat |
|
else: |
|
offset = y * vpr + x * self.planes |
|
end_offset = (y + 1) * vpr |
|
skip = self.planes * xstep |
|
for i in range(self.planes): |
|
a[offset + i : end_offset : skip] = flat[i :: self.planes] |
|
|
|
return a |
|
|
|
def _iter_bytes_to_values(self, byte_rows): |
|
""" |
|
Iterator that yields each scanline; |
|
each scanline being a sequence of values. |
|
`byte_rows` should be an iterator that yields |
|
the bytes of each row in turn. |
|
""" |
|
|
|
for row in byte_rows: |
|
yield self._bytes_to_values(row) |
|
|
|
def _bytes_to_values(self, bs, width=None): |
|
"""Convert a packed row of bytes into a row of values. |
|
Result will be a freshly allocated object, |
|
not shared with the argument. |
|
""" |
|
|
|
if self.bitdepth == 8: |
|
return bytearray(bs) |
|
if self.bitdepth == 16: |
|
return array("H", struct.unpack("!%dH" % (len(bs) // 2), bs)) |
|
|
|
assert self.bitdepth < 8 |
|
if width is None: |
|
width = self.width |
|
|
|
spb = 8 // self.bitdepth |
|
out = bytearray() |
|
mask = 2**self.bitdepth - 1 |
|
shifts = [self.bitdepth * i for i in reversed(list(range(spb)))] |
|
for o in bs: |
|
out.extend([mask & (o >> i) for i in shifts]) |
|
return out[:width] |
|
|
|
def _iter_straight_packed(self, byte_blocks): |
|
"""Iterator that undoes the effect of filtering; |
|
yields each row as a sequence of packed bytes. |
|
Assumes input is straightlaced. |
|
`byte_blocks` should be an iterable that yields the raw bytes |
|
in blocks of arbitrary size. |
|
""" |
|
|
|
|
|
rb = self.row_bytes |
|
a = bytearray() |
|
|
|
|
|
recon = None |
|
for some_bytes in byte_blocks: |
|
a.extend(some_bytes) |
|
while len(a) >= rb + 1: |
|
filter_type = a[0] |
|
scanline = a[1 : rb + 1] |
|
del a[: rb + 1] |
|
recon = self.undo_filter(filter_type, scanline, recon) |
|
yield recon |
|
if len(a) != 0: |
|
|
|
|
|
|
|
raise FormatError("Wrong size for decompressed IDAT chunk.") |
|
assert len(a) == 0 |
|
|
|
def validate_signature(self): |
|
""" |
|
If signature (header) has not been read then read and |
|
validate it; otherwise do nothing. |
|
""" |
|
|
|
if self.signature: |
|
return |
|
self.signature = self.file.read(8) |
|
if self.signature != signature: |
|
raise FormatError("PNG file has invalid signature.") |
|
|
|
def preamble(self, lenient=False): |
|
""" |
|
Extract the image metadata by reading |
|
the initial part of the PNG file up to |
|
the start of the ``IDAT`` chunk. |
|
All the chunks that precede the ``IDAT`` chunk are |
|
read and either processed for metadata or discarded. |
|
|
|
If the optional `lenient` argument evaluates to `True`, |
|
checksum failures will raise warnings rather than exceptions. |
|
""" |
|
|
|
self.validate_signature() |
|
|
|
while True: |
|
if not self.atchunk: |
|
self.atchunk = self._chunk_len_type() |
|
if self.atchunk is None: |
|
raise FormatError("This PNG file has no IDAT chunks.") |
|
if self.atchunk[1] == b"IDAT": |
|
return |
|
self.process_chunk(lenient=lenient) |
|
|
|
def _chunk_len_type(self): |
|
""" |
|
Reads just enough of the input to |
|
determine the next chunk's length and type; |
|
return a (*length*, *type*) pair where *type* is a byte sequence. |
|
If there are no more chunks, ``None`` is returned. |
|
""" |
|
|
|
x = self.file.read(8) |
|
if not x: |
|
return None |
|
if len(x) != 8: |
|
raise FormatError("End of file whilst reading chunk length and type.") |
|
length, type = struct.unpack("!I4s", x) |
|
if length > 2**31 - 1: |
|
raise FormatError("Chunk %s is too large: %d." % (type, length)) |
|
|
|
|
|
type_bytes = set(bytearray(type)) |
|
if not (type_bytes <= set(range(65, 91)) | set(range(97, 123))): |
|
raise FormatError("Chunk %r has invalid Chunk Type." % list(type)) |
|
return length, type |
|
|
|
def process_chunk(self, lenient=False): |
|
""" |
|
Process the next chunk and its data. |
|
This only processes the following chunk types: |
|
``IHDR``, ``PLTE``, ``bKGD``, ``tRNS``, ``gAMA``, ``sBIT``, ``pHYs``. |
|
All other chunk types are ignored. |
|
|
|
If the optional `lenient` argument evaluates to `True`, |
|
checksum failures will raise warnings rather than exceptions. |
|
""" |
|
|
|
type, data = self.chunk(lenient=lenient) |
|
method = "_process_" + type.decode("ascii") |
|
m = getattr(self, method, None) |
|
if m: |
|
m(data) |
|
|
|
def _process_IHDR(self, data): |
|
|
|
if len(data) != 13: |
|
raise FormatError("IHDR chunk has incorrect length.") |
|
( |
|
self.width, |
|
self.height, |
|
self.bitdepth, |
|
self.color_type, |
|
self.compression, |
|
self.filter, |
|
self.interlace, |
|
) = struct.unpack("!2I5B", data) |
|
|
|
check_bitdepth_colortype(self.bitdepth, self.color_type) |
|
|
|
if self.compression != 0: |
|
raise FormatError("Unknown compression method %d" % self.compression) |
|
if self.filter != 0: |
|
raise FormatError( |
|
"Unknown filter method %d," |
|
" see http://www.w3.org/TR/2003/REC-PNG-20031110/#9Filters ." |
|
% self.filter |
|
) |
|
if self.interlace not in (0, 1): |
|
raise FormatError( |
|
"Unknown interlace method %d, see " |
|
"http://www.w3.org/TR/2003/REC-PNG-20031110/#8InterlaceMethods" |
|
" ." % self.interlace |
|
) |
|
|
|
|
|
|
|
colormap = bool(self.color_type & 1) |
|
greyscale = not (self.color_type & 2) |
|
alpha = bool(self.color_type & 4) |
|
color_planes = (3, 1)[greyscale or colormap] |
|
planes = color_planes + alpha |
|
|
|
self.colormap = colormap |
|
self.greyscale = greyscale |
|
self.alpha = alpha |
|
self.color_planes = color_planes |
|
self.planes = planes |
|
self.psize = float(self.bitdepth) / float(8) * planes |
|
if int(self.psize) == self.psize: |
|
self.psize = int(self.psize) |
|
self.row_bytes = int(math.ceil(self.width * self.psize)) |
|
|
|
|
|
self.plte = None |
|
|
|
|
|
self.trns = None |
|
|
|
self.sbit = None |
|
|
|
def _process_PLTE(self, data): |
|
|
|
if self.plte: |
|
warnings.warn("Multiple PLTE chunks present.") |
|
self.plte = data |
|
if len(data) % 3 != 0: |
|
raise FormatError("PLTE chunk's length should be a multiple of 3.") |
|
if len(data) > (2**self.bitdepth) * 3: |
|
raise FormatError("PLTE chunk is too long.") |
|
if len(data) == 0: |
|
raise FormatError("Empty PLTE is not allowed.") |
|
|
|
def _process_bKGD(self, data): |
|
try: |
|
if self.colormap: |
|
if not self.plte: |
|
warnings.warn("PLTE chunk is required before bKGD chunk.") |
|
self.background = struct.unpack("B", data) |
|
else: |
|
self.background = struct.unpack("!%dH" % self.color_planes, data) |
|
except struct.error: |
|
raise FormatError("bKGD chunk has incorrect length.") |
|
|
|
def _process_tRNS(self, data): |
|
|
|
self.trns = data |
|
if self.colormap: |
|
if not self.plte: |
|
warnings.warn("PLTE chunk is required before tRNS chunk.") |
|
else: |
|
if len(data) > len(self.plte) / 3: |
|
|
|
|
|
raise FormatError("tRNS chunk is too long.") |
|
else: |
|
if self.alpha: |
|
raise FormatError( |
|
"tRNS chunk is not valid with colour type %d." % self.color_type |
|
) |
|
try: |
|
self.transparent = struct.unpack("!%dH" % self.color_planes, data) |
|
except struct.error: |
|
raise FormatError("tRNS chunk has incorrect length.") |
|
|
|
def _process_gAMA(self, data): |
|
try: |
|
self.gamma = struct.unpack("!L", data)[0] / 100000.0 |
|
except struct.error: |
|
raise FormatError("gAMA chunk has incorrect length.") |
|
|
|
def _process_sBIT(self, data): |
|
self.sbit = data |
|
if ( |
|
self.colormap |
|
and len(data) != 3 |
|
or not self.colormap |
|
and len(data) != self.planes |
|
): |
|
raise FormatError("sBIT chunk has incorrect length.") |
|
|
|
def _process_pHYs(self, data): |
|
|
|
self.phys = data |
|
fmt = "!LLB" |
|
if len(data) != struct.calcsize(fmt): |
|
raise FormatError("pHYs chunk has incorrect length.") |
|
self.x_pixels_per_unit, self.y_pixels_per_unit, unit = struct.unpack(fmt, data) |
|
self.unit_is_meter = bool(unit) |
|
|
|
def read(self, lenient=False): |
|
""" |
|
Read the PNG file and decode it. |
|
Returns (`width`, `height`, `rows`, `info`). |
|
|
|
May use excessive memory. |
|
|
|
`rows` is a sequence of rows; |
|
each row is a sequence of values. |
|
|
|
If the optional `lenient` argument evaluates to True, |
|
checksum failures will raise warnings rather than exceptions. |
|
""" |
|
|
|
def iteridat(): |
|
"""Iterator that yields all the ``IDAT`` chunks as strings.""" |
|
while True: |
|
type, data = self.chunk(lenient=lenient) |
|
if type == b"IEND": |
|
|
|
break |
|
if type != b"IDAT": |
|
continue |
|
|
|
|
|
if self.colormap and not self.plte: |
|
warnings.warn("PLTE chunk is required before IDAT chunk") |
|
yield data |
|
|
|
self.preamble(lenient=lenient) |
|
raw = decompress(iteridat()) |
|
|
|
if self.interlace: |
|
|
|
def rows_from_interlace(): |
|
"""Yield each row from an interlaced PNG.""" |
|
|
|
|
|
bs = bytearray(itertools.chain(*raw)) |
|
arraycode = "BH"[self.bitdepth > 8] |
|
|
|
|
|
values = self._deinterlace(bs) |
|
vpr = self.width * self.planes |
|
for i in range(0, len(values), vpr): |
|
row = array(arraycode, values[i : i + vpr]) |
|
yield row |
|
|
|
rows = rows_from_interlace() |
|
else: |
|
rows = self._iter_bytes_to_values(self._iter_straight_packed(raw)) |
|
info = dict() |
|
for attr in "greyscale alpha planes bitdepth interlace".split(): |
|
info[attr] = getattr(self, attr) |
|
info["size"] = (self.width, self.height) |
|
for attr in "gamma transparent background".split(): |
|
a = getattr(self, attr, None) |
|
if a is not None: |
|
info[attr] = a |
|
if getattr(self, "x_pixels_per_unit", None): |
|
info["physical"] = Resolution( |
|
self.x_pixels_per_unit, self.y_pixels_per_unit, self.unit_is_meter |
|
) |
|
if self.plte: |
|
info["palette"] = self.palette() |
|
return self.width, self.height, rows, info |
|
|
|
def read_flat(self): |
|
""" |
|
Read a PNG file and decode it into a single array of values. |
|
Returns (*width*, *height*, *values*, *info*). |
|
|
|
May use excessive memory. |
|
|
|
`values` is a single array. |
|
|
|
The :meth:`read` method is more stream-friendly than this, |
|
because it returns a sequence of rows. |
|
""" |
|
|
|
x, y, pixel, info = self.read() |
|
arraycode = "BH"[info["bitdepth"] > 8] |
|
pixel = array(arraycode, itertools.chain(*pixel)) |
|
return x, y, pixel, info |
|
|
|
def palette(self, alpha="natural"): |
|
""" |
|
Returns a palette that is a sequence of 3-tuples or 4-tuples, |
|
synthesizing it from the ``PLTE`` and ``tRNS`` chunks. |
|
These chunks should have already been processed (for example, |
|
by calling the :meth:`preamble` method). |
|
All the tuples are the same size: |
|
3-tuples if there is no ``tRNS`` chunk, |
|
4-tuples when there is a ``tRNS`` chunk. |
|
|
|
Assumes that the image is colour type |
|
3 and therefore a ``PLTE`` chunk is required. |
|
|
|
If the `alpha` argument is ``'force'`` then an alpha channel is |
|
always added, forcing the result to be a sequence of 4-tuples. |
|
""" |
|
|
|
if not self.plte: |
|
raise FormatError("Required PLTE chunk is missing in colour type 3 image.") |
|
plte = group(array("B", self.plte), 3) |
|
if self.trns or alpha == "force": |
|
trns = array("B", self.trns or []) |
|
trns.extend([255] * (len(plte) - len(trns))) |
|
plte = list(map(operator.add, plte, group(trns, 1))) |
|
return plte |
|
|
|
def asDirect(self): |
|
""" |
|
Returns the image data as a direct representation of |
|
an ``x * y * planes`` array. |
|
This removes the need for callers to deal with |
|
palettes and transparency themselves. |
|
Images with a palette (colour type 3) are converted to RGB or RGBA; |
|
images with transparency (a ``tRNS`` chunk) are converted to |
|
LA or RGBA as appropriate. |
|
When returned in this format the pixel values represent |
|
the colour value directly without needing to refer |
|
to palettes or transparency information. |
|
|
|
Like the :meth:`read` method this method returns a 4-tuple: |
|
|
|
(*width*, *height*, *rows*, *info*) |
|
|
|
This method normally returns pixel values with |
|
the bit depth they have in the source image, but |
|
when the source PNG has an ``sBIT`` chunk it is inspected and |
|
can reduce the bit depth of the result pixels; |
|
pixel values will be reduced according to the bit depth |
|
specified in the ``sBIT`` chunk. |
|
PNG nerds should note a single result bit depth is |
|
used for all channels: |
|
the maximum of the ones specified in the ``sBIT`` chunk. |
|
An RGB565 image will be rescaled to 6-bit RGB666. |
|
|
|
The *info* dictionary that is returned reflects |
|
the `direct` format and not the original source image. |
|
For example, an RGB source image with a ``tRNS`` chunk |
|
to represent a transparent colour, |
|
will start with ``planes=3`` and ``alpha=False`` for the |
|
source image, |
|
but the *info* dictionary returned by this method |
|
will have ``planes=4`` and ``alpha=True`` because |
|
an alpha channel is synthesized and added. |
|
|
|
*rows* is a sequence of rows; |
|
each row being a sequence of values |
|
(like the :meth:`read` method). |
|
|
|
All the other aspects of the image data are not changed. |
|
""" |
|
|
|
self.preamble() |
|
|
|
|
|
if not self.colormap and not self.trns and not self.sbit: |
|
return self.read() |
|
|
|
x, y, pixels, info = self.read() |
|
|
|
if self.colormap: |
|
info["colormap"] = False |
|
info["alpha"] = bool(self.trns) |
|
info["bitdepth"] = 8 |
|
info["planes"] = 3 + bool(self.trns) |
|
plte = self.palette() |
|
|
|
def iterpal(pixels): |
|
for row in pixels: |
|
row = [plte[x] for x in row] |
|
yield array("B", itertools.chain(*row)) |
|
|
|
pixels = iterpal(pixels) |
|
elif self.trns: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
it = self.transparent |
|
maxval = 2 ** info["bitdepth"] - 1 |
|
planes = info["planes"] |
|
info["alpha"] = True |
|
info["planes"] += 1 |
|
typecode = "BH"[info["bitdepth"] > 8] |
|
|
|
def itertrns(pixels): |
|
for row in pixels: |
|
|
|
|
|
|
|
|
|
|
|
row = group(row, planes) |
|
opa = map(it.__ne__, row) |
|
opa = map(maxval.__mul__, opa) |
|
opa = list(zip(opa)) |
|
yield array(typecode, itertools.chain(*map(operator.add, row, opa))) |
|
|
|
pixels = itertrns(pixels) |
|
targetbitdepth = None |
|
if self.sbit: |
|
sbit = struct.unpack("%dB" % len(self.sbit), self.sbit) |
|
targetbitdepth = max(sbit) |
|
if targetbitdepth > info["bitdepth"]: |
|
raise Error("sBIT chunk %r exceeds bitdepth %d" % (sbit, self.bitdepth)) |
|
if min(sbit) <= 0: |
|
raise Error("sBIT chunk %r has a 0-entry" % sbit) |
|
if targetbitdepth: |
|
shift = info["bitdepth"] - targetbitdepth |
|
info["bitdepth"] = targetbitdepth |
|
|
|
def itershift(pixels): |
|
for row in pixels: |
|
yield [p >> shift for p in row] |
|
|
|
pixels = itershift(pixels) |
|
return x, y, pixels, info |
|
|
|
def _as_rescale(self, get, targetbitdepth): |
|
"""Helper used by :meth:`asRGB8` and :meth:`asRGBA8`.""" |
|
|
|
width, height, pixels, info = get() |
|
maxval = 2 ** info["bitdepth"] - 1 |
|
targetmaxval = 2**targetbitdepth - 1 |
|
factor = float(targetmaxval) / float(maxval) |
|
info["bitdepth"] = targetbitdepth |
|
|
|
def iterscale(): |
|
for row in pixels: |
|
yield [int(round(x * factor)) for x in row] |
|
|
|
if maxval == targetmaxval: |
|
return width, height, pixels, info |
|
else: |
|
return width, height, iterscale(), info |
|
|
|
def asRGB8(self): |
|
""" |
|
Return the image data as an RGB pixels with 8-bits per sample. |
|
This is like the :meth:`asRGB` method except that |
|
this method additionally rescales the values so that |
|
they are all between 0 and 255 (8-bit). |
|
In the case where the source image has a bit depth < 8 |
|
the transformation preserves all the information; |
|
where the source image has bit depth > 8, then |
|
rescaling to 8-bit values loses precision. |
|
No dithering is performed. |
|
Like :meth:`asRGB`, |
|
an alpha channel in the source image will raise an exception. |
|
|
|
This function returns a 4-tuple: |
|
(*width*, *height*, *rows*, *info*). |
|
*width*, *height*, *info* are as per the :meth:`read` method. |
|
|
|
*rows* is the pixel data as a sequence of rows. |
|
""" |
|
|
|
return self._as_rescale(self.asRGB, 8) |
|
|
|
def asRGBA8(self): |
|
""" |
|
Return the image data as RGBA pixels with 8-bits per sample. |
|
This method is similar to :meth:`asRGB8` and :meth:`asRGBA`: |
|
The result pixels have an alpha channel, *and* |
|
values are rescaled to the range 0 to 255. |
|
The alpha channel is synthesized if necessary |
|
(with a small speed penalty). |
|
""" |
|
|
|
return self._as_rescale(self.asRGBA, 8) |
|
|
|
def asRGB(self): |
|
""" |
|
Return image as RGB pixels. |
|
RGB colour images are passed through unchanged; |
|
greyscales are expanded into RGB triplets |
|
(there is a small speed overhead for doing this). |
|
|
|
An alpha channel in the source image will raise an exception. |
|
|
|
The return values are as for the :meth:`read` method except that |
|
the *info* reflect the returned pixels, not the source image. |
|
In particular, |
|
for this method ``info['greyscale']`` will be ``False``. |
|
""" |
|
|
|
width, height, pixels, info = self.asDirect() |
|
if info["alpha"]: |
|
raise Error("will not convert image with alpha channel to RGB") |
|
if not info["greyscale"]: |
|
return width, height, pixels, info |
|
info["greyscale"] = False |
|
info["planes"] = 3 |
|
|
|
if info["bitdepth"] > 8: |
|
|
|
def newarray(): |
|
return array("H", [0]) |
|
|
|
else: |
|
|
|
def newarray(): |
|
return bytearray([0]) |
|
|
|
def iterrgb(): |
|
for row in pixels: |
|
a = newarray() * 3 * width |
|
for i in range(3): |
|
a[i::3] = row |
|
yield a |
|
|
|
return width, height, iterrgb(), info |
|
|
|
def asRGBA(self): |
|
""" |
|
Return image as RGBA pixels. |
|
Greyscales are expanded into RGB triplets; |
|
an alpha channel is synthesized if necessary. |
|
The return values are as for the :meth:`read` method except that |
|
the *info* reflect the returned pixels, not the source image. |
|
In particular, for this method |
|
``info['greyscale']`` will be ``False``, and |
|
``info['alpha']`` will be ``True``. |
|
""" |
|
|
|
width, height, pixels, info = self.asDirect() |
|
if info["alpha"] and not info["greyscale"]: |
|
return width, height, pixels, info |
|
typecode = "BH"[info["bitdepth"] > 8] |
|
maxval = 2 ** info["bitdepth"] - 1 |
|
maxbuffer = struct.pack("=" + typecode, maxval) * 4 * width |
|
|
|
if info["bitdepth"] > 8: |
|
|
|
def newarray(): |
|
return array("H", maxbuffer) |
|
|
|
else: |
|
|
|
def newarray(): |
|
return bytearray(maxbuffer) |
|
|
|
if info["alpha"] and info["greyscale"]: |
|
|
|
def convert(): |
|
for row in pixels: |
|
|
|
|
|
|
|
a = newarray() |
|
convert_la_to_rgba(row, a) |
|
yield a |
|
|
|
elif info["greyscale"]: |
|
|
|
def convert(): |
|
for row in pixels: |
|
a = newarray() |
|
convert_l_to_rgba(row, a) |
|
yield a |
|
|
|
else: |
|
assert not info["alpha"] and not info["greyscale"] |
|
|
|
|
|
def convert(): |
|
for row in pixels: |
|
a = newarray() |
|
convert_rgb_to_rgba(row, a) |
|
yield a |
|
|
|
info["alpha"] = True |
|
info["greyscale"] = False |
|
info["planes"] = 4 |
|
return width, height, convert(), info |
|
|
|
|
|
def decompress(data_blocks): |
|
""" |
|
`data_blocks` should be an iterable that |
|
yields the compressed data (from the ``IDAT`` chunks). |
|
This yields decompressed byte strings. |
|
""" |
|
|
|
|
|
|
|
|
|
d = zlib.decompressobj() |
|
|
|
|
|
for data in data_blocks: |
|
|
|
yield bytearray(d.decompress(data)) |
|
yield bytearray(d.flush()) |
|
|
|
|
|
def check_bitdepth_colortype(bitdepth, colortype): |
|
""" |
|
Check that `bitdepth` and `colortype` are both valid, |
|
and specified in a valid combination. |
|
Returns (None) if valid, raise an Exception if not valid. |
|
""" |
|
|
|
if bitdepth not in (1, 2, 4, 8, 16): |
|
raise FormatError("invalid bit depth %d" % bitdepth) |
|
if colortype not in (0, 2, 3, 4, 6): |
|
raise FormatError("invalid colour type %d" % colortype) |
|
|
|
|
|
|
|
if colortype & 1 and bitdepth > 8: |
|
raise FormatError( |
|
"Indexed images (colour type %d) cannot" |
|
" have bitdepth > 8 (bit depth %d)." |
|
" See http://www.w3.org/TR/2003/REC-PNG-20031110/#table111 ." |
|
% (bitdepth, colortype) |
|
) |
|
if bitdepth < 8 and colortype not in (0, 3): |
|
raise FormatError( |
|
"Illegal combination of bit depth (%d)" |
|
" and colour type (%d)." |
|
" See http://www.w3.org/TR/2003/REC-PNG-20031110/#table111 ." |
|
% (bitdepth, colortype) |
|
) |
|
|
|
|
|
def is_natural(x): |
|
"""A non-negative integer.""" |
|
try: |
|
is_integer = int(x) == x |
|
except (TypeError, ValueError): |
|
return False |
|
return is_integer and x >= 0 |
|
|
|
|
|
def undo_filter_sub(filter_unit, scanline, previous, result): |
|
"""Undo sub filter.""" |
|
|
|
ai = 0 |
|
|
|
|
|
|
|
for i in range(filter_unit, len(result)): |
|
x = scanline[i] |
|
a = result[ai] |
|
result[i] = (x + a) & 0xFF |
|
ai += 1 |
|
|
|
|
|
def undo_filter_up(filter_unit, scanline, previous, result): |
|
"""Undo up filter.""" |
|
|
|
for i in range(len(result)): |
|
x = scanline[i] |
|
b = previous[i] |
|
result[i] = (x + b) & 0xFF |
|
|
|
|
|
def undo_filter_average(filter_unit, scanline, previous, result): |
|
"""Undo up filter.""" |
|
|
|
ai = -filter_unit |
|
for i in range(len(result)): |
|
x = scanline[i] |
|
if ai < 0: |
|
a = 0 |
|
else: |
|
a = result[ai] |
|
b = previous[i] |
|
result[i] = (x + ((a + b) >> 1)) & 0xFF |
|
ai += 1 |
|
|
|
|
|
def undo_filter_paeth(filter_unit, scanline, previous, result): |
|
"""Undo Paeth filter.""" |
|
|
|
|
|
ai = -filter_unit |
|
for i in range(len(result)): |
|
x = scanline[i] |
|
if ai < 0: |
|
a = c = 0 |
|
else: |
|
a = result[ai] |
|
c = previous[ai] |
|
b = previous[i] |
|
p = a + b - c |
|
pa = abs(p - a) |
|
pb = abs(p - b) |
|
pc = abs(p - c) |
|
if pa <= pb and pa <= pc: |
|
pr = a |
|
elif pb <= pc: |
|
pr = b |
|
else: |
|
pr = c |
|
result[i] = (x + pr) & 0xFF |
|
ai += 1 |
|
|
|
|
|
def convert_la_to_rgba(row, result): |
|
for i in range(3): |
|
result[i::4] = row[0::2] |
|
result[3::4] = row[1::2] |
|
|
|
|
|
def convert_l_to_rgba(row, result): |
|
""" |
|
Convert a grayscale image to RGBA. |
|
This method assumes the alpha channel in result is |
|
already correctly initialized. |
|
""" |
|
for i in range(3): |
|
result[i::4] = row |
|
|
|
|
|
def convert_rgb_to_rgba(row, result): |
|
""" |
|
Convert an RGB image to RGBA. |
|
This method assumes the alpha channel in result is |
|
already correctly initialized. |
|
""" |
|
for i in range(3): |
|
result[i::4] = row[i::3] |
|
|
|
|
|
|
|
|
|
def binary_stdin(): |
|
""" |
|
A sys.stdin that returns bytes. |
|
""" |
|
|
|
return sys.stdin.buffer |
|
|
|
|
|
def binary_stdout(): |
|
""" |
|
A sys.stdout that accepts bytes. |
|
""" |
|
|
|
stdout = sys.stdout.buffer |
|
|
|
|
|
if sys.platform == "win32": |
|
import msvcrt |
|
import os |
|
|
|
msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY) |
|
|
|
return stdout |
|
|
|
|
|
def cli_open(path): |
|
if path == "-": |
|
return binary_stdin() |
|
return open(path, "rb") |
|
|