|
import base64 |
|
import numbers |
|
import textwrap |
|
import uuid |
|
from importlib import import_module |
|
import copy |
|
import io |
|
import re |
|
import sys |
|
import warnings |
|
|
|
from _plotly_utils.optional_imports import get_module |
|
|
|
|
|
|
|
def fullmatch(regex, string, flags=0): |
|
"""Emulate python-3.4 re.fullmatch().""" |
|
if "pattern" in dir(regex): |
|
regex_string = regex.pattern |
|
else: |
|
regex_string = regex |
|
return re.match("(?:" + regex_string + r")\Z", string, flags=flags) |
|
|
|
|
|
|
|
|
|
def to_scalar_or_list(v): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
np = get_module("numpy", should_load=False) |
|
pd = get_module("pandas", should_load=False) |
|
if np and np.isscalar(v) and hasattr(v, "item"): |
|
return v.item() |
|
if isinstance(v, (list, tuple)): |
|
return [to_scalar_or_list(e) for e in v] |
|
elif np and isinstance(v, np.ndarray): |
|
if v.ndim == 0: |
|
return v.item() |
|
return [to_scalar_or_list(e) for e in v] |
|
elif pd and isinstance(v, (pd.Series, pd.Index)): |
|
return [to_scalar_or_list(e) for e in v] |
|
elif is_numpy_convertable(v): |
|
return to_scalar_or_list(np.array(v)) |
|
else: |
|
return v |
|
|
|
|
|
def copy_to_readonly_numpy_array(v, kind=None, force_numeric=False): |
|
""" |
|
Convert an array-like value into a read-only numpy array |
|
|
|
Parameters |
|
---------- |
|
v : array like |
|
Array like value (list, tuple, numpy array, pandas series, etc.) |
|
kind : str or tuple of str |
|
If specified, the numpy dtype kind (or kinds) that the array should |
|
have, or be converted to if possible. |
|
If not specified then let numpy infer the datatype |
|
force_numeric : bool |
|
If true, raise an exception if the resulting numpy array does not |
|
have a numeric dtype (i.e. dtype.kind not in ['u', 'i', 'f']) |
|
Returns |
|
------- |
|
np.ndarray |
|
Numpy array with the 'WRITEABLE' flag set to False |
|
""" |
|
np = get_module("numpy") |
|
|
|
|
|
pd = get_module("pandas", should_load=False) |
|
assert np is not None |
|
|
|
|
|
if not kind: |
|
kind = () |
|
elif isinstance(kind, str): |
|
kind = (kind,) |
|
|
|
first_kind = kind[0] if kind else None |
|
|
|
|
|
numeric_kinds = {"u", "i", "f"} |
|
kind_default_dtypes = { |
|
"u": "uint32", |
|
"i": "int32", |
|
"f": "float64", |
|
"O": "object", |
|
} |
|
|
|
|
|
if pd and isinstance(v, (pd.Series, pd.Index)): |
|
if v.dtype.kind in numeric_kinds: |
|
|
|
v = v.values |
|
elif v.dtype.kind == "M": |
|
|
|
if isinstance(v, pd.Series): |
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("ignore", FutureWarning) |
|
|
|
|
|
v = np.array(v.dt.to_pydatetime()) |
|
else: |
|
|
|
v = v.to_pydatetime() |
|
elif pd and isinstance(v, pd.DataFrame) and len(set(v.dtypes)) == 1: |
|
dtype = v.dtypes.tolist()[0] |
|
if dtype.kind in numeric_kinds: |
|
v = v.values |
|
elif dtype.kind == "M": |
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("ignore", FutureWarning) |
|
|
|
|
|
v = [ |
|
np.array(row.dt.to_pydatetime()).tolist() for i, row in v.iterrows() |
|
] |
|
|
|
if not isinstance(v, np.ndarray): |
|
|
|
if is_numpy_convertable(v): |
|
return copy_to_readonly_numpy_array( |
|
np.array(v), kind=kind, force_numeric=force_numeric |
|
) |
|
else: |
|
|
|
v_list = [to_scalar_or_list(e) for e in v] |
|
|
|
|
|
dtype = kind_default_dtypes.get(first_kind, None) |
|
|
|
|
|
new_v = np.array(v_list, order="C", dtype=dtype) |
|
elif v.dtype.kind in numeric_kinds: |
|
|
|
if kind and v.dtype.kind not in kind: |
|
|
|
|
|
dtype = kind_default_dtypes.get(first_kind, None) |
|
new_v = np.ascontiguousarray(v.astype(dtype)) |
|
else: |
|
|
|
new_v = np.ascontiguousarray(v.copy()) |
|
else: |
|
|
|
new_v = v.copy() |
|
|
|
|
|
|
|
if force_numeric and new_v.dtype.kind not in numeric_kinds: |
|
raise ValueError( |
|
"Input value is not numeric and force_numeric parameter set to True" |
|
) |
|
|
|
if "U" not in kind: |
|
|
|
|
|
|
|
|
|
|
|
|
|
if new_v.dtype.kind not in ["u", "i", "f", "O", "M"]: |
|
new_v = np.array(v, dtype="object") |
|
|
|
|
|
|
|
new_v.flags["WRITEABLE"] = False |
|
|
|
return new_v |
|
|
|
|
|
def is_numpy_convertable(v): |
|
""" |
|
Return whether a value is meaningfully convertable to a numpy array |
|
via 'numpy.array' |
|
""" |
|
return hasattr(v, "__array__") or hasattr(v, "__array_interface__") |
|
|
|
|
|
def is_homogeneous_array(v): |
|
""" |
|
Return whether a value is considered to be a homogeneous array |
|
""" |
|
np = get_module("numpy", should_load=False) |
|
pd = get_module("pandas", should_load=False) |
|
if ( |
|
np |
|
and isinstance(v, np.ndarray) |
|
or (pd and isinstance(v, (pd.Series, pd.Index))) |
|
): |
|
return True |
|
if is_numpy_convertable(v): |
|
np = get_module("numpy", should_load=True) |
|
if np: |
|
v_numpy = np.array(v) |
|
|
|
if v_numpy.shape == (): |
|
return False |
|
else: |
|
return True |
|
return False |
|
|
|
|
|
def is_simple_array(v): |
|
""" |
|
Return whether a value is considered to be an simple array |
|
""" |
|
return isinstance(v, (list, tuple)) |
|
|
|
|
|
def is_array(v): |
|
""" |
|
Return whether a value is considered to be an array |
|
""" |
|
return is_simple_array(v) or is_homogeneous_array(v) |
|
|
|
|
|
def type_str(v): |
|
""" |
|
Return a type string of the form module.name for the input value v |
|
""" |
|
if not isinstance(v, type): |
|
v = type(v) |
|
|
|
return "'{module}.{name}'".format(module=v.__module__, name=v.__name__) |
|
|
|
|
|
|
|
|
|
class BaseValidator(object): |
|
""" |
|
Base class for all validator classes |
|
""" |
|
|
|
def __init__(self, plotly_name, parent_name, role=None, **_): |
|
""" |
|
Construct a validator instance |
|
|
|
Parameters |
|
---------- |
|
plotly_name : str |
|
Name of the property being validated |
|
parent_name : str |
|
Names of all of the ancestors of this property joined on '.' |
|
characters. e.g. |
|
plotly_name == 'range' and parent_name == 'layout.xaxis' |
|
role : str |
|
The role string for the property as specified in |
|
plot-schema.json |
|
""" |
|
self.parent_name = parent_name |
|
self.plotly_name = plotly_name |
|
self.role = role |
|
self.array_ok = False |
|
|
|
def description(self): |
|
""" |
|
Returns a string that describes the values that are acceptable |
|
to the validator |
|
|
|
Should start with: |
|
The '{plotly_name}' property is a... |
|
|
|
For consistancy, string should have leading 4-space indent |
|
""" |
|
raise NotImplementedError() |
|
|
|
def raise_invalid_val(self, v, inds=None): |
|
""" |
|
Helper method to raise an informative exception when an invalid |
|
value is passed to the validate_coerce method. |
|
|
|
Parameters |
|
---------- |
|
v : |
|
Value that was input to validate_coerce and could not be coerced |
|
inds: list of int or None (default) |
|
Indexes to display after property name. e.g. if self.plotly_name |
|
is 'prop' and inds=[2, 1] then the name in the validation error |
|
message will be 'prop[2][1]` |
|
Raises |
|
------- |
|
ValueError |
|
""" |
|
name = self.plotly_name |
|
if inds: |
|
for i in inds: |
|
name += "[" + str(i) + "]" |
|
|
|
raise ValueError( |
|
""" |
|
Invalid value of type {typ} received for the '{name}' property of {pname} |
|
Received value: {v} |
|
|
|
{valid_clr_desc}""".format( |
|
name=name, |
|
pname=self.parent_name, |
|
typ=type_str(v), |
|
v=repr(v), |
|
valid_clr_desc=self.description(), |
|
) |
|
) |
|
|
|
def raise_invalid_elements(self, invalid_els): |
|
if invalid_els: |
|
raise ValueError( |
|
""" |
|
Invalid element(s) received for the '{name}' property of {pname} |
|
Invalid elements include: {invalid} |
|
|
|
{valid_clr_desc}""".format( |
|
name=self.plotly_name, |
|
pname=self.parent_name, |
|
invalid=invalid_els[:10], |
|
valid_clr_desc=self.description(), |
|
) |
|
) |
|
|
|
def validate_coerce(self, v): |
|
""" |
|
Validate whether an input value is compatible with this property, |
|
and coerce the value to be compatible of possible. |
|
|
|
Parameters |
|
---------- |
|
v |
|
The input value to be validated |
|
|
|
Raises |
|
------ |
|
ValueError |
|
if `v` cannot be coerced into a compatible form |
|
|
|
Returns |
|
------- |
|
The input `v` in a form that's compatible with this property |
|
""" |
|
raise NotImplementedError() |
|
|
|
def present(self, v): |
|
""" |
|
Convert output value of a previous call to `validate_coerce` into a |
|
form suitable to be returned to the user on upon property |
|
access. |
|
|
|
Note: The value returned by present must be either immutable or an |
|
instance of BasePlotlyType, otherwise the value could be mutated by |
|
the user and we wouldn't get notified about the change. |
|
|
|
Parameters |
|
---------- |
|
v |
|
A value that was the ouput of a previous call the |
|
`validate_coerce` method on the same object |
|
|
|
Returns |
|
------- |
|
|
|
""" |
|
if is_homogeneous_array(v): |
|
|
|
|
|
return v |
|
elif is_simple_array(v): |
|
return tuple(v) |
|
else: |
|
return v |
|
|
|
|
|
class DataArrayValidator(BaseValidator): |
|
""" |
|
"data_array": { |
|
"description": "An {array} of data. The value MUST be an |
|
{array}, or we ignore it.", |
|
"requiredOpts": [], |
|
"otherOpts": [ |
|
"dflt" |
|
] |
|
}, |
|
""" |
|
|
|
def __init__(self, plotly_name, parent_name, **kwargs): |
|
super(DataArrayValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
|
|
self.array_ok = True |
|
|
|
def description(self): |
|
return """\ |
|
The '{plotly_name}' property is an array that may be specified as a tuple, |
|
list, numpy array, or pandas Series""".format( |
|
plotly_name=self.plotly_name |
|
) |
|
|
|
def validate_coerce(self, v): |
|
|
|
if v is None: |
|
|
|
pass |
|
elif is_homogeneous_array(v): |
|
v = copy_to_readonly_numpy_array(v) |
|
elif is_simple_array(v): |
|
v = to_scalar_or_list(v) |
|
else: |
|
self.raise_invalid_val(v) |
|
return v |
|
|
|
|
|
class EnumeratedValidator(BaseValidator): |
|
""" |
|
"enumerated": { |
|
"description": "Enumerated value type. The available values are |
|
listed in `values`.", |
|
"requiredOpts": [ |
|
"values" |
|
], |
|
"otherOpts": [ |
|
"dflt", |
|
"coerceNumber", |
|
"arrayOk" |
|
] |
|
}, |
|
""" |
|
|
|
def __init__( |
|
self, |
|
plotly_name, |
|
parent_name, |
|
values, |
|
array_ok=False, |
|
coerce_number=False, |
|
**kwargs, |
|
): |
|
super(EnumeratedValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
|
|
|
|
|
|
self.values = values |
|
self.array_ok = array_ok |
|
|
|
self.coerce_number = coerce_number |
|
self.kwargs = kwargs |
|
|
|
|
|
|
|
|
|
self.val_regexs = [] |
|
|
|
|
|
|
|
|
|
self.regex_replacements = [] |
|
|
|
|
|
|
|
|
|
for v in self.values: |
|
if v and isinstance(v, str) and v[0] == "/" and v[-1] == "/" and len(v) > 1: |
|
|
|
regex_str = v[1:-1] |
|
self.val_regexs.append(re.compile(regex_str)) |
|
self.regex_replacements.append( |
|
EnumeratedValidator.build_regex_replacement(regex_str) |
|
) |
|
else: |
|
self.val_regexs.append(None) |
|
self.regex_replacements.append(None) |
|
|
|
def __deepcopy__(self, memodict={}): |
|
""" |
|
A custom deepcopy method is needed here because compiled regex |
|
objects don't support deepcopy |
|
""" |
|
cls = self.__class__ |
|
return cls(self.plotly_name, self.parent_name, values=self.values) |
|
|
|
@staticmethod |
|
def build_regex_replacement(regex_str): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
match = re.match( |
|
r"\^(\w)\(\[2\-9\]\|\[1\-9\]\[0\-9\]\+\)\?\( domain\)\?\$", regex_str |
|
) |
|
|
|
if match: |
|
anchor_char = match.group(1) |
|
return "^" + anchor_char + "1$", anchor_char |
|
else: |
|
return None |
|
|
|
def perform_replacemenet(self, v): |
|
""" |
|
Return v with any applicable regex replacements applied |
|
""" |
|
if isinstance(v, str): |
|
for repl_args in self.regex_replacements: |
|
if repl_args: |
|
v = re.sub(repl_args[0], repl_args[1], v) |
|
|
|
return v |
|
|
|
def description(self): |
|
|
|
|
|
enum_vals = [] |
|
enum_regexs = [] |
|
for v, regex in zip(self.values, self.val_regexs): |
|
if regex is not None: |
|
enum_regexs.append(regex.pattern) |
|
else: |
|
enum_vals.append(v) |
|
desc = """\ |
|
The '{name}' property is an enumeration that may be specified as:""".format( |
|
name=self.plotly_name |
|
) |
|
|
|
if enum_vals: |
|
enum_vals_str = "\n".join( |
|
textwrap.wrap( |
|
repr(enum_vals), |
|
initial_indent=" " * 12, |
|
subsequent_indent=" " * 12, |
|
break_on_hyphens=False, |
|
) |
|
) |
|
|
|
desc = ( |
|
desc |
|
+ """ |
|
- One of the following enumeration values: |
|
{enum_vals_str}""".format( |
|
enum_vals_str=enum_vals_str |
|
) |
|
) |
|
|
|
if enum_regexs: |
|
enum_regexs_str = "\n".join( |
|
textwrap.wrap( |
|
repr(enum_regexs), |
|
initial_indent=" " * 12, |
|
subsequent_indent=" " * 12, |
|
break_on_hyphens=False, |
|
) |
|
) |
|
|
|
desc = ( |
|
desc |
|
+ """ |
|
- A string that matches one of the following regular expressions: |
|
{enum_regexs_str}""".format( |
|
enum_regexs_str=enum_regexs_str |
|
) |
|
) |
|
|
|
if self.array_ok: |
|
desc = ( |
|
desc |
|
+ """ |
|
- A tuple, list, or one-dimensional numpy array of the above""" |
|
) |
|
|
|
return desc |
|
|
|
def in_values(self, e): |
|
""" |
|
Return whether a value matches one of the enumeration options |
|
""" |
|
is_str = isinstance(e, str) |
|
for v, regex in zip(self.values, self.val_regexs): |
|
if is_str and regex: |
|
in_values = fullmatch(regex, e) is not None |
|
|
|
else: |
|
in_values = e == v |
|
|
|
if in_values: |
|
return True |
|
|
|
return False |
|
|
|
def validate_coerce(self, v): |
|
if v is None: |
|
|
|
pass |
|
elif self.array_ok and is_array(v): |
|
v_replaced = [self.perform_replacemenet(v_el) for v_el in v] |
|
|
|
invalid_els = [e for e in v_replaced if (not self.in_values(e))] |
|
if invalid_els: |
|
self.raise_invalid_elements(invalid_els[:10]) |
|
|
|
if is_homogeneous_array(v): |
|
v = copy_to_readonly_numpy_array(v) |
|
else: |
|
v = to_scalar_or_list(v) |
|
else: |
|
v = self.perform_replacemenet(v) |
|
if not self.in_values(v): |
|
self.raise_invalid_val(v) |
|
return v |
|
|
|
|
|
class BooleanValidator(BaseValidator): |
|
""" |
|
"boolean": { |
|
"description": "A boolean (true/false) value.", |
|
"requiredOpts": [], |
|
"otherOpts": [ |
|
"dflt" |
|
] |
|
}, |
|
""" |
|
|
|
def __init__(self, plotly_name, parent_name, **kwargs): |
|
super(BooleanValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
|
|
def description(self): |
|
return """\ |
|
The '{plotly_name}' property must be specified as a bool |
|
(either True, or False)""".format( |
|
plotly_name=self.plotly_name |
|
) |
|
|
|
def validate_coerce(self, v): |
|
if v is None: |
|
|
|
pass |
|
elif not isinstance(v, bool): |
|
self.raise_invalid_val(v) |
|
|
|
return v |
|
|
|
|
|
class SrcValidator(BaseValidator): |
|
def __init__(self, plotly_name, parent_name, **kwargs): |
|
super(SrcValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
|
|
self.chart_studio = get_module("chart_studio") |
|
|
|
def description(self): |
|
return """\ |
|
The '{plotly_name}' property must be specified as a string or |
|
as a plotly.grid_objs.Column object""".format( |
|
plotly_name=self.plotly_name |
|
) |
|
|
|
def validate_coerce(self, v): |
|
if v is None: |
|
|
|
pass |
|
elif isinstance(v, str): |
|
pass |
|
elif self.chart_studio and isinstance(v, self.chart_studio.grid_objs.Column): |
|
|
|
v = v.id |
|
else: |
|
self.raise_invalid_val(v) |
|
|
|
return v |
|
|
|
|
|
class NumberValidator(BaseValidator): |
|
""" |
|
"number": { |
|
"description": "A number or a numeric value (e.g. a number |
|
inside a string). When applicable, values |
|
greater (less) than `max` (`min`) are coerced to |
|
the `dflt`.", |
|
"requiredOpts": [], |
|
"otherOpts": [ |
|
"dflt", |
|
"min", |
|
"max", |
|
"arrayOk" |
|
] |
|
}, |
|
""" |
|
|
|
def __init__( |
|
self, plotly_name, parent_name, min=None, max=None, array_ok=False, **kwargs |
|
): |
|
super(NumberValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
|
|
|
|
if min is None and max is not None: |
|
|
|
self.min_val = float("-inf") |
|
else: |
|
self.min_val = min |
|
|
|
|
|
if max is None and min is not None: |
|
|
|
self.max_val = float("inf") |
|
else: |
|
self.max_val = max |
|
|
|
if min is not None or max is not None: |
|
self.has_min_max = True |
|
else: |
|
self.has_min_max = False |
|
|
|
self.array_ok = array_ok |
|
|
|
def description(self): |
|
desc = """\ |
|
The '{plotly_name}' property is a number and may be specified as:""".format( |
|
plotly_name=self.plotly_name |
|
) |
|
|
|
if not self.has_min_max: |
|
desc = ( |
|
desc |
|
+ """ |
|
- An int or float""" |
|
) |
|
|
|
else: |
|
desc = ( |
|
desc |
|
+ """ |
|
- An int or float in the interval [{min_val}, {max_val}]""".format( |
|
min_val=self.min_val, max_val=self.max_val |
|
) |
|
) |
|
|
|
if self.array_ok: |
|
desc = ( |
|
desc |
|
+ """ |
|
- A tuple, list, or one-dimensional numpy array of the above""" |
|
) |
|
|
|
return desc |
|
|
|
def validate_coerce(self, v): |
|
if v is None: |
|
|
|
pass |
|
elif self.array_ok and is_homogeneous_array(v): |
|
np = get_module("numpy") |
|
try: |
|
v_array = copy_to_readonly_numpy_array(v, force_numeric=True) |
|
except (ValueError, TypeError, OverflowError): |
|
self.raise_invalid_val(v) |
|
|
|
|
|
if self.has_min_max: |
|
v_valid = np.logical_and( |
|
self.min_val <= v_array, v_array <= self.max_val |
|
) |
|
|
|
if not np.all(v_valid): |
|
|
|
v_invalid = np.logical_not(v_valid) |
|
some_invalid_els = np.array(v, dtype="object")[v_invalid][ |
|
:10 |
|
].tolist() |
|
|
|
self.raise_invalid_elements(some_invalid_els) |
|
|
|
v = v_array |
|
elif self.array_ok and is_simple_array(v): |
|
|
|
invalid_els = [e for e in v if not isinstance(e, numbers.Number)] |
|
|
|
if invalid_els: |
|
self.raise_invalid_elements(invalid_els[:10]) |
|
|
|
|
|
if self.has_min_max: |
|
invalid_els = [e for e in v if not (self.min_val <= e <= self.max_val)] |
|
|
|
if invalid_els: |
|
self.raise_invalid_elements(invalid_els[:10]) |
|
|
|
v = to_scalar_or_list(v) |
|
else: |
|
|
|
if not isinstance(v, numbers.Number): |
|
self.raise_invalid_val(v) |
|
|
|
|
|
if self.has_min_max: |
|
if not (self.min_val <= v <= self.max_val): |
|
self.raise_invalid_val(v) |
|
return v |
|
|
|
|
|
class IntegerValidator(BaseValidator): |
|
""" |
|
"integer": { |
|
"description": "An integer or an integer inside a string. When |
|
applicable, values greater (less) than `max` |
|
(`min`) are coerced to the `dflt`.", |
|
"requiredOpts": [], |
|
"otherOpts": [ |
|
"dflt", |
|
"min", |
|
"max", |
|
"extras", |
|
"arrayOk" |
|
] |
|
}, |
|
""" |
|
|
|
def __init__( |
|
self, |
|
plotly_name, |
|
parent_name, |
|
min=None, |
|
max=None, |
|
extras=None, |
|
array_ok=False, |
|
**kwargs, |
|
): |
|
super(IntegerValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
|
|
|
|
if min is None and max is not None: |
|
|
|
self.min_val = -sys.maxsize - 1 |
|
else: |
|
self.min_val = min |
|
|
|
|
|
if max is None and min is not None: |
|
|
|
self.max_val = sys.maxsize |
|
else: |
|
self.max_val = max |
|
|
|
if min is not None or max is not None: |
|
self.has_min_max = True |
|
else: |
|
self.has_min_max = False |
|
|
|
self.extras = extras if extras is not None else [] |
|
self.array_ok = array_ok |
|
|
|
def description(self): |
|
desc = """\ |
|
The '{plotly_name}' property is a integer and may be specified as:""".format( |
|
plotly_name=self.plotly_name |
|
) |
|
|
|
if not self.has_min_max: |
|
desc = ( |
|
desc |
|
+ """ |
|
- An int (or float that will be cast to an int)""" |
|
) |
|
else: |
|
desc = desc + ( |
|
""" |
|
- An int (or float that will be cast to an int) |
|
in the interval [{min_val}, {max_val}]""".format( |
|
min_val=self.min_val, max_val=self.max_val |
|
) |
|
) |
|
|
|
|
|
if self.extras: |
|
desc = ( |
|
desc |
|
+ ( |
|
""" |
|
OR exactly one of {extras} (e.g. '{eg_extra}')""" |
|
).format(extras=self.extras, eg_extra=self.extras[-1]) |
|
) |
|
|
|
if self.array_ok: |
|
desc = ( |
|
desc |
|
+ """ |
|
- A tuple, list, or one-dimensional numpy array of the above""" |
|
) |
|
|
|
return desc |
|
|
|
def validate_coerce(self, v): |
|
if v is None: |
|
|
|
pass |
|
elif v in self.extras: |
|
return v |
|
elif self.array_ok and is_homogeneous_array(v): |
|
np = get_module("numpy") |
|
v_array = copy_to_readonly_numpy_array( |
|
v, kind=("i", "u"), force_numeric=True |
|
) |
|
|
|
if v_array.dtype.kind not in ["i", "u"]: |
|
self.raise_invalid_val(v) |
|
|
|
|
|
if self.has_min_max: |
|
v_valid = np.logical_and( |
|
self.min_val <= v_array, v_array <= self.max_val |
|
) |
|
|
|
if not np.all(v_valid): |
|
|
|
v_invalid = np.logical_not(v_valid) |
|
some_invalid_els = np.array(v, dtype="object")[v_invalid][ |
|
:10 |
|
].tolist() |
|
self.raise_invalid_elements(some_invalid_els) |
|
|
|
v = v_array |
|
elif self.array_ok and is_simple_array(v): |
|
|
|
invalid_els = [ |
|
e for e in v if not isinstance(e, int) and e not in self.extras |
|
] |
|
|
|
if invalid_els: |
|
self.raise_invalid_elements(invalid_els[:10]) |
|
|
|
|
|
if self.has_min_max: |
|
invalid_els = [ |
|
e |
|
for e in v |
|
if not (isinstance(e, int) and self.min_val <= e <= self.max_val) |
|
and e not in self.extras |
|
] |
|
|
|
if invalid_els: |
|
self.raise_invalid_elements(invalid_els[:10]) |
|
|
|
v = to_scalar_or_list(v) |
|
else: |
|
|
|
if not isinstance(v, int): |
|
|
|
self.raise_invalid_val(v) |
|
|
|
|
|
if self.has_min_max: |
|
if not (self.min_val <= v <= self.max_val): |
|
self.raise_invalid_val(v) |
|
|
|
return v |
|
|
|
|
|
class StringValidator(BaseValidator): |
|
""" |
|
"string": { |
|
"description": "A string value. Numbers are converted to strings |
|
except for attributes with `strict` set to true.", |
|
"requiredOpts": [], |
|
"otherOpts": [ |
|
"dflt", |
|
"noBlank", |
|
"strict", |
|
"arrayOk", |
|
"values" |
|
] |
|
}, |
|
""" |
|
|
|
def __init__( |
|
self, |
|
plotly_name, |
|
parent_name, |
|
no_blank=False, |
|
strict=False, |
|
array_ok=False, |
|
values=None, |
|
**kwargs, |
|
): |
|
super(StringValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
self.no_blank = no_blank |
|
self.strict = strict |
|
self.array_ok = array_ok |
|
self.values = values |
|
|
|
@staticmethod |
|
def to_str_or_unicode_or_none(v): |
|
""" |
|
Convert a value to a string if it's not None, a string, |
|
or a unicode (on Python 2). |
|
""" |
|
if v is None or isinstance(v, str): |
|
return v |
|
else: |
|
return str(v) |
|
|
|
def description(self): |
|
desc = """\ |
|
The '{plotly_name}' property is a string and must be specified as:""".format( |
|
plotly_name=self.plotly_name |
|
) |
|
|
|
if self.no_blank: |
|
desc = ( |
|
desc |
|
+ """ |
|
- A non-empty string""" |
|
) |
|
elif self.values: |
|
valid_str = "\n".join( |
|
textwrap.wrap( |
|
repr(self.values), |
|
initial_indent=" " * 12, |
|
subsequent_indent=" " * 12, |
|
break_on_hyphens=False, |
|
) |
|
) |
|
|
|
desc = ( |
|
desc |
|
+ """ |
|
- One of the following strings: |
|
{valid_str}""".format( |
|
valid_str=valid_str |
|
) |
|
) |
|
else: |
|
desc = ( |
|
desc |
|
+ """ |
|
- A string""" |
|
) |
|
|
|
if not self.strict: |
|
desc = ( |
|
desc |
|
+ """ |
|
- A number that will be converted to a string""" |
|
) |
|
|
|
if self.array_ok: |
|
desc = ( |
|
desc |
|
+ """ |
|
- A tuple, list, or one-dimensional numpy array of the above""" |
|
) |
|
|
|
return desc |
|
|
|
def validate_coerce(self, v): |
|
if v is None: |
|
|
|
pass |
|
elif self.array_ok and is_array(v): |
|
|
|
|
|
if self.strict: |
|
invalid_els = [e for e in v if not isinstance(e, str)] |
|
if invalid_els: |
|
self.raise_invalid_elements(invalid_els) |
|
|
|
if is_homogeneous_array(v): |
|
np = get_module("numpy") |
|
|
|
|
|
v = copy_to_readonly_numpy_array(v, kind="U") |
|
|
|
|
|
if self.no_blank: |
|
invalid_els = v[v == ""][:10].tolist() |
|
if invalid_els: |
|
self.raise_invalid_elements(invalid_els) |
|
|
|
|
|
if self.values: |
|
invalid_inds = np.logical_not(np.isin(v, self.values)) |
|
invalid_els = v[invalid_inds][:10].tolist() |
|
if invalid_els: |
|
self.raise_invalid_elements(invalid_els) |
|
elif is_simple_array(v): |
|
if not self.strict: |
|
v = [StringValidator.to_str_or_unicode_or_none(e) for e in v] |
|
|
|
|
|
if self.no_blank: |
|
invalid_els = [e for e in v if e == ""] |
|
if invalid_els: |
|
self.raise_invalid_elements(invalid_els) |
|
|
|
|
|
if self.values: |
|
invalid_els = [e for e in v if v not in self.values] |
|
if invalid_els: |
|
self.raise_invalid_elements(invalid_els) |
|
|
|
v = to_scalar_or_list(v) |
|
|
|
else: |
|
if self.strict: |
|
if not isinstance(v, str): |
|
self.raise_invalid_val(v) |
|
else: |
|
if isinstance(v, str): |
|
pass |
|
elif isinstance(v, (int, float)): |
|
|
|
v = str(v) |
|
else: |
|
self.raise_invalid_val(v) |
|
|
|
if self.no_blank and len(v) == 0: |
|
self.raise_invalid_val(v) |
|
|
|
if self.values and v not in self.values: |
|
self.raise_invalid_val(v) |
|
|
|
return v |
|
|
|
|
|
class ColorValidator(BaseValidator): |
|
""" |
|
"color": { |
|
"description": "A string describing color. Supported formats: |
|
- hex (e.g. '#d3d3d3') |
|
- rgb (e.g. 'rgb(255, 0, 0)') |
|
- rgba (e.g. 'rgb(255, 0, 0, 0.5)') |
|
- hsl (e.g. 'hsl(0, 100%, 50%)') |
|
- hsv (e.g. 'hsv(0, 100%, 100%)') |
|
- named colors(full list: |
|
http://www.w3.org/TR/css3-color/#svg-color)", |
|
"requiredOpts": [], |
|
"otherOpts": [ |
|
"dflt", |
|
"arrayOk" |
|
] |
|
}, |
|
""" |
|
|
|
re_hex = re.compile(r"#([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3})") |
|
re_rgb_etc = re.compile(r"(rgb|hsl|hsv)a?\([\d.]+%?(,[\d.]+%?){2,3}\)") |
|
re_ddk = re.compile(r"var\(\-\-.*\)") |
|
|
|
named_colors = [ |
|
"aliceblue", |
|
"antiquewhite", |
|
"aqua", |
|
"aquamarine", |
|
"azure", |
|
"beige", |
|
"bisque", |
|
"black", |
|
"blanchedalmond", |
|
"blue", |
|
"blueviolet", |
|
"brown", |
|
"burlywood", |
|
"cadetblue", |
|
"chartreuse", |
|
"chocolate", |
|
"coral", |
|
"cornflowerblue", |
|
"cornsilk", |
|
"crimson", |
|
"cyan", |
|
"darkblue", |
|
"darkcyan", |
|
"darkgoldenrod", |
|
"darkgray", |
|
"darkgrey", |
|
"darkgreen", |
|
"darkkhaki", |
|
"darkmagenta", |
|
"darkolivegreen", |
|
"darkorange", |
|
"darkorchid", |
|
"darkred", |
|
"darksalmon", |
|
"darkseagreen", |
|
"darkslateblue", |
|
"darkslategray", |
|
"darkslategrey", |
|
"darkturquoise", |
|
"darkviolet", |
|
"deeppink", |
|
"deepskyblue", |
|
"dimgray", |
|
"dimgrey", |
|
"dodgerblue", |
|
"firebrick", |
|
"floralwhite", |
|
"forestgreen", |
|
"fuchsia", |
|
"gainsboro", |
|
"ghostwhite", |
|
"gold", |
|
"goldenrod", |
|
"gray", |
|
"grey", |
|
"green", |
|
"greenyellow", |
|
"honeydew", |
|
"hotpink", |
|
"indianred", |
|
"indigo", |
|
"ivory", |
|
"khaki", |
|
"lavender", |
|
"lavenderblush", |
|
"lawngreen", |
|
"lemonchiffon", |
|
"lightblue", |
|
"lightcoral", |
|
"lightcyan", |
|
"lightgoldenrodyellow", |
|
"lightgray", |
|
"lightgrey", |
|
"lightgreen", |
|
"lightpink", |
|
"lightsalmon", |
|
"lightseagreen", |
|
"lightskyblue", |
|
"lightslategray", |
|
"lightslategrey", |
|
"lightsteelblue", |
|
"lightyellow", |
|
"lime", |
|
"limegreen", |
|
"linen", |
|
"magenta", |
|
"maroon", |
|
"mediumaquamarine", |
|
"mediumblue", |
|
"mediumorchid", |
|
"mediumpurple", |
|
"mediumseagreen", |
|
"mediumslateblue", |
|
"mediumspringgreen", |
|
"mediumturquoise", |
|
"mediumvioletred", |
|
"midnightblue", |
|
"mintcream", |
|
"mistyrose", |
|
"moccasin", |
|
"navajowhite", |
|
"navy", |
|
"oldlace", |
|
"olive", |
|
"olivedrab", |
|
"orange", |
|
"orangered", |
|
"orchid", |
|
"palegoldenrod", |
|
"palegreen", |
|
"paleturquoise", |
|
"palevioletred", |
|
"papayawhip", |
|
"peachpuff", |
|
"peru", |
|
"pink", |
|
"plum", |
|
"powderblue", |
|
"purple", |
|
"red", |
|
"rosybrown", |
|
"royalblue", |
|
"rebeccapurple", |
|
"saddlebrown", |
|
"salmon", |
|
"sandybrown", |
|
"seagreen", |
|
"seashell", |
|
"sienna", |
|
"silver", |
|
"skyblue", |
|
"slateblue", |
|
"slategray", |
|
"slategrey", |
|
"snow", |
|
"springgreen", |
|
"steelblue", |
|
"tan", |
|
"teal", |
|
"thistle", |
|
"tomato", |
|
"turquoise", |
|
"violet", |
|
"wheat", |
|
"white", |
|
"whitesmoke", |
|
"yellow", |
|
"yellowgreen", |
|
] |
|
|
|
def __init__( |
|
self, plotly_name, parent_name, array_ok=False, colorscale_path=None, **kwargs |
|
): |
|
super(ColorValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
|
|
self.array_ok = array_ok |
|
|
|
|
|
|
|
|
|
self.colorscale_path = colorscale_path |
|
|
|
def numbers_allowed(self): |
|
return self.colorscale_path is not None |
|
|
|
def description(self): |
|
|
|
named_clrs_str = "\n".join( |
|
textwrap.wrap( |
|
", ".join(self.named_colors), |
|
width=79 - 16, |
|
initial_indent=" " * 12, |
|
subsequent_indent=" " * 12, |
|
) |
|
) |
|
|
|
valid_color_description = """\ |
|
The '{plotly_name}' property is a color and may be specified as: |
|
- A hex string (e.g. '#ff0000') |
|
- An rgb/rgba string (e.g. 'rgb(255,0,0)') |
|
- An hsl/hsla string (e.g. 'hsl(0,100%,50%)') |
|
- An hsv/hsva string (e.g. 'hsv(0,100%,100%)') |
|
- A named CSS color: |
|
{clrs}""".format( |
|
plotly_name=self.plotly_name, clrs=named_clrs_str |
|
) |
|
|
|
if self.colorscale_path: |
|
valid_color_description = ( |
|
valid_color_description |
|
+ """ |
|
- A number that will be interpreted as a color |
|
according to {colorscale_path}""".format( |
|
colorscale_path=self.colorscale_path |
|
) |
|
) |
|
|
|
if self.array_ok: |
|
valid_color_description = ( |
|
valid_color_description |
|
+ """ |
|
- A list or array of any of the above""" |
|
) |
|
|
|
return valid_color_description |
|
|
|
def validate_coerce(self, v, should_raise=True): |
|
if v is None: |
|
|
|
pass |
|
elif self.array_ok and is_homogeneous_array(v): |
|
v = copy_to_readonly_numpy_array(v) |
|
if self.numbers_allowed() and v.dtype.kind in ["u", "i", "f"]: |
|
|
|
|
|
pass |
|
else: |
|
validated_v = [self.validate_coerce(e, should_raise=False) for e in v] |
|
|
|
invalid_els = self.find_invalid_els(v, validated_v) |
|
|
|
if invalid_els and should_raise: |
|
self.raise_invalid_elements(invalid_els) |
|
|
|
|
|
elif self.numbers_allowed() or invalid_els: |
|
v = copy_to_readonly_numpy_array(validated_v, kind="O") |
|
else: |
|
v = copy_to_readonly_numpy_array(validated_v, kind="U") |
|
elif self.array_ok and is_simple_array(v): |
|
validated_v = [self.validate_coerce(e, should_raise=False) for e in v] |
|
|
|
invalid_els = self.find_invalid_els(v, validated_v) |
|
|
|
if invalid_els and should_raise: |
|
self.raise_invalid_elements(invalid_els) |
|
else: |
|
v = validated_v |
|
else: |
|
|
|
validated_v = self.vc_scalar(v) |
|
if validated_v is None and should_raise: |
|
self.raise_invalid_val(v) |
|
|
|
v = validated_v |
|
|
|
return v |
|
|
|
def find_invalid_els(self, orig, validated, invalid_els=None): |
|
""" |
|
Helper method to find invalid elements in orig array. |
|
Elements are invalid if their corresponding element in |
|
the validated array is None. |
|
|
|
This method handles deeply nested list structures |
|
""" |
|
if invalid_els is None: |
|
invalid_els = [] |
|
|
|
for orig_el, validated_el in zip(orig, validated): |
|
if is_array(orig_el): |
|
self.find_invalid_els(orig_el, validated_el, invalid_els) |
|
else: |
|
if validated_el is None: |
|
invalid_els.append(orig_el) |
|
|
|
return invalid_els |
|
|
|
def vc_scalar(self, v): |
|
"""Helper to validate/coerce a scalar color""" |
|
return ColorValidator.perform_validate_coerce( |
|
v, allow_number=self.numbers_allowed() |
|
) |
|
|
|
@staticmethod |
|
def perform_validate_coerce(v, allow_number=None): |
|
""" |
|
Validate, coerce, and return a single color value. If input cannot be |
|
coerced to a valid color then return None. |
|
|
|
Parameters |
|
---------- |
|
v : number or str |
|
Candidate color value |
|
|
|
allow_number : bool |
|
True if numbers are allowed as colors |
|
|
|
Returns |
|
------- |
|
number or str or None |
|
""" |
|
|
|
if isinstance(v, numbers.Number) and allow_number: |
|
|
|
return v |
|
elif not isinstance(v, str): |
|
|
|
return None |
|
else: |
|
|
|
v_normalized = v.replace(" ", "").lower() |
|
|
|
|
|
if fullmatch(ColorValidator.re_hex, v_normalized): |
|
|
|
return v |
|
elif fullmatch(ColorValidator.re_rgb_etc, v_normalized): |
|
|
|
|
|
|
|
return v |
|
elif fullmatch(ColorValidator.re_ddk, v_normalized): |
|
|
|
|
|
|
|
return v |
|
elif v_normalized in ColorValidator.named_colors: |
|
|
|
return v |
|
else: |
|
|
|
return None |
|
|
|
|
|
class ColorlistValidator(BaseValidator): |
|
""" |
|
"colorlist": { |
|
"description": "A list of colors. Must be an {array} containing |
|
valid colors.", |
|
"requiredOpts": [], |
|
"otherOpts": [ |
|
"dflt" |
|
] |
|
} |
|
""" |
|
|
|
def __init__(self, plotly_name, parent_name, **kwargs): |
|
super(ColorlistValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
|
|
def description(self): |
|
return """\ |
|
The '{plotly_name}' property is a colorlist that may be specified |
|
as a tuple, list, one-dimensional numpy array, or pandas Series of valid |
|
color strings""".format( |
|
plotly_name=self.plotly_name |
|
) |
|
|
|
def validate_coerce(self, v): |
|
|
|
if v is None: |
|
|
|
pass |
|
elif is_array(v): |
|
validated_v = [ |
|
ColorValidator.perform_validate_coerce(e, allow_number=False) for e in v |
|
] |
|
|
|
invalid_els = [ |
|
el for el, validated_el in zip(v, validated_v) if validated_el is None |
|
] |
|
if invalid_els: |
|
self.raise_invalid_elements(invalid_els) |
|
|
|
v = to_scalar_or_list(v) |
|
else: |
|
self.raise_invalid_val(v) |
|
return v |
|
|
|
|
|
class ColorscaleValidator(BaseValidator): |
|
""" |
|
"colorscale": { |
|
"description": "A Plotly colorscale either picked by a name: |
|
(any of Greys, YlGnBu, Greens, YlOrRd, Bluered, |
|
RdBu, Reds, Blues, Picnic, Rainbow, Portland, |
|
Jet, Hot, Blackbody, Earth, Electric, Viridis) |
|
customized as an {array} of 2-element {arrays} |
|
where the first element is the normalized color |
|
level value (starting at *0* and ending at *1*), |
|
and the second item is a valid color string.", |
|
"requiredOpts": [], |
|
"otherOpts": [ |
|
"dflt" |
|
] |
|
}, |
|
""" |
|
|
|
def __init__(self, plotly_name, parent_name, **kwargs): |
|
super(ColorscaleValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
|
|
|
|
self._named_colorscales = None |
|
|
|
@property |
|
def named_colorscales(self): |
|
if self._named_colorscales is None: |
|
import inspect |
|
import itertools |
|
from plotly import colors |
|
|
|
colorscale_members = itertools.chain( |
|
inspect.getmembers(colors.sequential), |
|
inspect.getmembers(colors.diverging), |
|
inspect.getmembers(colors.cyclical), |
|
) |
|
|
|
self._named_colorscales = { |
|
c[0].lower(): c[1] |
|
for c in colorscale_members |
|
if isinstance(c, tuple) |
|
and len(c) == 2 |
|
and isinstance(c[0], str) |
|
and isinstance(c[1], list) |
|
and not c[0].endswith("_r") |
|
and not c[0].startswith("_") |
|
} |
|
|
|
return self._named_colorscales |
|
|
|
def description(self): |
|
colorscales_str = "\n".join( |
|
textwrap.wrap( |
|
repr(sorted(list(self.named_colorscales))), |
|
initial_indent=" " * 12, |
|
subsequent_indent=" " * 13, |
|
break_on_hyphens=False, |
|
width=80, |
|
) |
|
) |
|
|
|
desc = """\ |
|
The '{plotly_name}' property is a colorscale and may be |
|
specified as: |
|
- A list of colors that will be spaced evenly to create the colorscale. |
|
Many predefined colorscale lists are included in the sequential, diverging, |
|
and cyclical modules in the plotly.colors package. |
|
- A list of 2-element lists where the first element is the |
|
normalized color level value (starting at 0 and ending at 1), |
|
and the second item is a valid color string. |
|
(e.g. [[0, 'green'], [0.5, 'red'], [1.0, 'rgb(0, 0, 255)']]) |
|
- One of the following named colorscales: |
|
{colorscales_str}. |
|
Appending '_r' to a named colorscale reverses it. |
|
""".format( |
|
plotly_name=self.plotly_name, colorscales_str=colorscales_str |
|
) |
|
|
|
return desc |
|
|
|
def validate_coerce(self, v): |
|
v_valid = False |
|
|
|
if v is None: |
|
v_valid = True |
|
elif isinstance(v, str): |
|
v_lower = v.lower() |
|
if v_lower in self.named_colorscales: |
|
|
|
v = self.named_colorscales[v_lower] |
|
v_valid = True |
|
elif v_lower.endswith("_r") and v_lower[:-2] in self.named_colorscales: |
|
v = self.named_colorscales[v_lower[:-2]][::-1] |
|
v_valid = True |
|
|
|
if v_valid: |
|
|
|
d = len(v) - 1 |
|
v = [[(1.0 * i) / (1.0 * d), x] for i, x in enumerate(v)] |
|
|
|
elif is_array(v) and len(v) > 0: |
|
|
|
if isinstance(v[0], str): |
|
invalid_els = [ |
|
e for e in v if ColorValidator.perform_validate_coerce(e) is None |
|
] |
|
|
|
if len(invalid_els) == 0: |
|
v_valid = True |
|
|
|
|
|
d = len(v) - 1 |
|
v = [[(1.0 * i) / (1.0 * d), x] for i, x in enumerate(v)] |
|
else: |
|
invalid_els = [ |
|
e |
|
for e in v |
|
if ( |
|
not is_array(e) |
|
or len(e) != 2 |
|
or not isinstance(e[0], numbers.Number) |
|
or not (0 <= e[0] <= 1) |
|
or not isinstance(e[1], str) |
|
or ColorValidator.perform_validate_coerce(e[1]) is None |
|
) |
|
] |
|
|
|
if len(invalid_els) == 0: |
|
v_valid = True |
|
|
|
|
|
v = [ |
|
[e[0], ColorValidator.perform_validate_coerce(e[1])] for e in v |
|
] |
|
|
|
if not v_valid: |
|
self.raise_invalid_val(v) |
|
|
|
return v |
|
|
|
def present(self, v): |
|
|
|
if v is None: |
|
return None |
|
elif isinstance(v, str): |
|
return v |
|
else: |
|
return tuple([tuple(e) for e in v]) |
|
|
|
|
|
class AngleValidator(BaseValidator): |
|
""" |
|
"angle": { |
|
"description": "A number (in degree) between -180 and 180.", |
|
"requiredOpts": [], |
|
"otherOpts": [ |
|
"dflt", |
|
"arrayOk" |
|
] |
|
}, |
|
""" |
|
|
|
def __init__(self, plotly_name, parent_name, array_ok=False, **kwargs): |
|
super(AngleValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
self.array_ok = array_ok |
|
|
|
def description(self): |
|
desc = """\ |
|
The '{plotly_name}' property is a angle (in degrees) that may be |
|
specified as a number between -180 and 180{array_ok}. |
|
Numeric values outside this range are converted to the equivalent value |
|
(e.g. 270 is converted to -90). |
|
""".format( |
|
plotly_name=self.plotly_name, |
|
array_ok=", or a list, numpy array or other iterable thereof" |
|
if self.array_ok |
|
else "", |
|
) |
|
|
|
return desc |
|
|
|
def validate_coerce(self, v): |
|
if v is None: |
|
|
|
pass |
|
elif self.array_ok and is_homogeneous_array(v): |
|
try: |
|
v_array = copy_to_readonly_numpy_array(v, force_numeric=True) |
|
except (ValueError, TypeError, OverflowError): |
|
self.raise_invalid_val(v) |
|
v = v_array |
|
|
|
v = (v + 180) % 360 - 180 |
|
elif self.array_ok and is_simple_array(v): |
|
|
|
invalid_els = [e for e in v if not isinstance(e, numbers.Number)] |
|
|
|
if invalid_els: |
|
self.raise_invalid_elements(invalid_els[:10]) |
|
|
|
v = [(x + 180) % 360 - 180 for x in to_scalar_or_list(v)] |
|
elif not isinstance(v, numbers.Number): |
|
self.raise_invalid_val(v) |
|
else: |
|
|
|
v = (v + 180) % 360 - 180 |
|
|
|
return v |
|
|
|
|
|
class SubplotidValidator(BaseValidator): |
|
""" |
|
"subplotid": { |
|
"description": "An id string of a subplot type (given by dflt), |
|
optionally followed by an integer >1. e.g. if |
|
dflt='geo', we can have 'geo', 'geo2', 'geo3', |
|
...", |
|
"requiredOpts": [ |
|
"dflt" |
|
], |
|
"otherOpts": [ |
|
"regex" |
|
] |
|
} |
|
""" |
|
|
|
def __init__(self, plotly_name, parent_name, dflt=None, regex=None, **kwargs): |
|
|
|
if dflt is None and regex is None: |
|
raise ValueError("One or both of regex and deflt must be specified") |
|
|
|
super(SubplotidValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
|
|
if dflt is not None: |
|
self.base = dflt |
|
else: |
|
|
|
self.base = re.match(r"/\^(\w+)", regex).group(1) |
|
|
|
self.regex = self.base + r"(\d*)" |
|
|
|
def description(self): |
|
|
|
desc = """\ |
|
The '{plotly_name}' property is an identifier of a particular |
|
subplot, of type '{base}', that may be specified as the string '{base}' |
|
optionally followed by an integer >= 1 |
|
(e.g. '{base}', '{base}1', '{base}2', '{base}3', etc.) |
|
""".format( |
|
plotly_name=self.plotly_name, base=self.base |
|
) |
|
return desc |
|
|
|
def validate_coerce(self, v): |
|
if v is None: |
|
pass |
|
elif not isinstance(v, str): |
|
self.raise_invalid_val(v) |
|
else: |
|
|
|
match = fullmatch(self.regex, v) |
|
if not match: |
|
is_valid = False |
|
else: |
|
digit_str = match.group(1) |
|
if len(digit_str) > 0 and int(digit_str) == 0: |
|
is_valid = False |
|
elif len(digit_str) > 0 and int(digit_str) == 1: |
|
|
|
v = self.base |
|
is_valid = True |
|
else: |
|
is_valid = True |
|
|
|
if not is_valid: |
|
self.raise_invalid_val(v) |
|
return v |
|
|
|
|
|
class FlaglistValidator(BaseValidator): |
|
""" |
|
"flaglist": { |
|
"description": "A string representing a combination of flags |
|
(order does not matter here). Combine any of the |
|
available `flags` with *+*. |
|
(e.g. ('lines+markers')). Values in `extras` |
|
cannot be combined.", |
|
"requiredOpts": [ |
|
"flags" |
|
], |
|
"otherOpts": [ |
|
"dflt", |
|
"extras", |
|
"arrayOk" |
|
] |
|
}, |
|
""" |
|
|
|
def __init__( |
|
self, plotly_name, parent_name, flags, extras=None, array_ok=False, **kwargs |
|
): |
|
super(FlaglistValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
self.flags = flags |
|
self.extras = extras if extras is not None else [] |
|
self.array_ok = array_ok |
|
|
|
def description(self): |
|
|
|
desc = ( |
|
"""\ |
|
The '{plotly_name}' property is a flaglist and may be specified |
|
as a string containing:""" |
|
).format(plotly_name=self.plotly_name) |
|
|
|
|
|
desc = ( |
|
desc |
|
+ ( |
|
""" |
|
- Any combination of {flags} joined with '+' characters |
|
(e.g. '{eg_flag}')""" |
|
).format(flags=self.flags, eg_flag="+".join(self.flags[:2])) |
|
) |
|
|
|
|
|
if self.extras: |
|
desc = ( |
|
desc |
|
+ ( |
|
""" |
|
OR exactly one of {extras} (e.g. '{eg_extra}')""" |
|
).format(extras=self.extras, eg_extra=self.extras[-1]) |
|
) |
|
|
|
if self.array_ok: |
|
desc = ( |
|
desc |
|
+ """ |
|
- A list or array of the above""" |
|
) |
|
|
|
return desc |
|
|
|
def vc_scalar(self, v): |
|
if isinstance(v, str): |
|
v = v.strip() |
|
|
|
if v in self.extras: |
|
return v |
|
|
|
if not isinstance(v, str): |
|
return None |
|
|
|
|
|
|
|
split_vals = [e.strip() for e in re.split("[,+]", v)] |
|
|
|
|
|
if all(f in self.flags for f in split_vals): |
|
return "+".join(split_vals) |
|
else: |
|
return None |
|
|
|
def validate_coerce(self, v): |
|
if v is None: |
|
|
|
pass |
|
elif self.array_ok and is_array(v): |
|
|
|
|
|
validated_v = [self.vc_scalar(e) for e in v] |
|
|
|
invalid_els = [ |
|
el for el, validated_el in zip(v, validated_v) if validated_el is None |
|
] |
|
if invalid_els: |
|
self.raise_invalid_elements(invalid_els) |
|
|
|
if is_homogeneous_array(v): |
|
v = copy_to_readonly_numpy_array(validated_v, kind="U") |
|
else: |
|
v = to_scalar_or_list(v) |
|
else: |
|
|
|
validated_v = self.vc_scalar(v) |
|
if validated_v is None: |
|
self.raise_invalid_val(v) |
|
|
|
v = validated_v |
|
|
|
return v |
|
|
|
|
|
class AnyValidator(BaseValidator): |
|
""" |
|
"any": { |
|
"description": "Any type.", |
|
"requiredOpts": [], |
|
"otherOpts": [ |
|
"dflt", |
|
"values", |
|
"arrayOk" |
|
] |
|
}, |
|
""" |
|
|
|
def __init__(self, plotly_name, parent_name, values=None, array_ok=False, **kwargs): |
|
super(AnyValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
self.values = values |
|
self.array_ok = array_ok |
|
|
|
def description(self): |
|
|
|
desc = """\ |
|
The '{plotly_name}' property accepts values of any type |
|
""".format( |
|
plotly_name=self.plotly_name |
|
) |
|
return desc |
|
|
|
def validate_coerce(self, v): |
|
if v is None: |
|
|
|
pass |
|
elif self.array_ok and is_homogeneous_array(v): |
|
v = copy_to_readonly_numpy_array(v, kind="O") |
|
elif self.array_ok and is_simple_array(v): |
|
v = to_scalar_or_list(v) |
|
return v |
|
|
|
|
|
class InfoArrayValidator(BaseValidator): |
|
""" |
|
"info_array": { |
|
"description": "An {array} of plot information.", |
|
"requiredOpts": [ |
|
"items" |
|
], |
|
"otherOpts": [ |
|
"dflt", |
|
"freeLength", |
|
"dimensions" |
|
] |
|
} |
|
""" |
|
|
|
def __init__( |
|
self, |
|
plotly_name, |
|
parent_name, |
|
items, |
|
free_length=None, |
|
dimensions=None, |
|
**kwargs, |
|
): |
|
super(InfoArrayValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
|
|
self.items = items |
|
self.dimensions = dimensions if dimensions else 1 |
|
self.free_length = free_length |
|
|
|
|
|
self.item_validators = [] |
|
info_array_items = self.items if isinstance(self.items, list) else [self.items] |
|
|
|
for i, item in enumerate(info_array_items): |
|
element_name = "{name}[{i}]".format(name=plotly_name, i=i) |
|
item_validator = InfoArrayValidator.build_validator( |
|
item, element_name, parent_name |
|
) |
|
self.item_validators.append(item_validator) |
|
|
|
def description(self): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
desc = """\ |
|
The '{plotly_name}' property is an info array that may be specified as:\ |
|
""".format( |
|
plotly_name=self.plotly_name |
|
) |
|
|
|
if isinstance(self.items, list): |
|
|
|
if self.dimensions in (1, "1-2"): |
|
upto = " up to" if self.free_length and self.dimensions == 1 else "" |
|
desc += """ |
|
|
|
* a list or tuple of{upto} {N} elements where:\ |
|
""".format( |
|
upto=upto, N=len(self.item_validators) |
|
) |
|
|
|
for i, item_validator in enumerate(self.item_validators): |
|
el_desc = item_validator.description().strip() |
|
desc = ( |
|
desc |
|
+ """ |
|
({i}) {el_desc}""".format( |
|
i=i, el_desc=el_desc |
|
) |
|
) |
|
|
|
|
|
if self.dimensions in ("1-2", 2): |
|
assert self.free_length |
|
|
|
desc += """ |
|
|
|
* a 2D list where:""" |
|
for i, item_validator in enumerate(self.item_validators): |
|
|
|
orig_name = item_validator.plotly_name |
|
item_validator.plotly_name = "{name}[i][{i}]".format( |
|
name=self.plotly_name, i=i |
|
) |
|
|
|
el_desc = item_validator.description().strip() |
|
desc = ( |
|
desc |
|
+ """ |
|
({i}) {el_desc}""".format( |
|
i=i, el_desc=el_desc |
|
) |
|
) |
|
item_validator.plotly_name = orig_name |
|
else: |
|
|
|
assert self.free_length |
|
item_validator = self.item_validators[0] |
|
orig_name = item_validator.plotly_name |
|
|
|
if self.dimensions in (1, "1-2"): |
|
item_validator.plotly_name = "{name}[i]".format(name=self.plotly_name) |
|
|
|
el_desc = item_validator.description().strip() |
|
|
|
desc += """ |
|
* a list of elements where: |
|
{el_desc} |
|
""".format( |
|
el_desc=el_desc |
|
) |
|
|
|
if self.dimensions in ("1-2", 2): |
|
item_validator.plotly_name = "{name}[i][j]".format( |
|
name=self.plotly_name |
|
) |
|
|
|
el_desc = item_validator.description().strip() |
|
desc += """ |
|
* a 2D list where: |
|
{el_desc} |
|
""".format( |
|
el_desc=el_desc |
|
) |
|
|
|
item_validator.plotly_name = orig_name |
|
|
|
return desc |
|
|
|
@staticmethod |
|
def build_validator(validator_info, plotly_name, parent_name): |
|
datatype = validator_info["valType"] |
|
validator_classname = datatype.title().replace("_", "") + "Validator" |
|
validator_class = eval(validator_classname) |
|
|
|
kwargs = { |
|
k: validator_info[k] |
|
for k in validator_info |
|
if k not in ["valType", "description", "role"] |
|
} |
|
|
|
return validator_class( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
|
|
def validate_element_with_indexed_name(self, val, validator, inds): |
|
""" |
|
Helper to add indexes to a validator's name, call validate_coerce on |
|
a value, then restore the original validator name. |
|
|
|
This makes sure that if a validation error message is raised, the |
|
property name the user sees includes the index(es) of the offending |
|
element. |
|
|
|
Parameters |
|
---------- |
|
val: |
|
A value to be validated |
|
validator |
|
A validator |
|
inds |
|
List of one or more non-negative integers that represent the |
|
nested index of the value being validated |
|
Returns |
|
------- |
|
val |
|
validated value |
|
|
|
Raises |
|
------ |
|
ValueError |
|
if val fails validation |
|
""" |
|
orig_name = validator.plotly_name |
|
new_name = self.plotly_name |
|
for i in inds: |
|
new_name += "[" + str(i) + "]" |
|
validator.plotly_name = new_name |
|
try: |
|
val = validator.validate_coerce(val) |
|
finally: |
|
validator.plotly_name = orig_name |
|
|
|
return val |
|
|
|
def validate_coerce(self, v): |
|
if v is None: |
|
|
|
return None |
|
elif not is_array(v): |
|
self.raise_invalid_val(v) |
|
|
|
|
|
orig_v = v |
|
|
|
|
|
|
|
v = to_scalar_or_list(v) |
|
|
|
is_v_2d = v and is_array(v[0]) |
|
|
|
if is_v_2d and self.dimensions in ("1-2", 2): |
|
if is_array(self.items): |
|
|
|
|
|
for i, row in enumerate(v): |
|
|
|
if not is_array(row) or len(row) != len(self.items): |
|
self.raise_invalid_val(orig_v[i], [i]) |
|
|
|
for j, validator in enumerate(self.item_validators): |
|
row[j] = self.validate_element_with_indexed_name( |
|
v[i][j], validator, [i, j] |
|
) |
|
else: |
|
|
|
|
|
validator = self.item_validators[0] |
|
for i, row in enumerate(v): |
|
if not is_array(row): |
|
self.raise_invalid_val(orig_v[i], [i]) |
|
|
|
for j, el in enumerate(row): |
|
row[j] = self.validate_element_with_indexed_name( |
|
el, validator, [i, j] |
|
) |
|
elif v and self.dimensions == 2: |
|
|
|
self.raise_invalid_val(orig_v[0], [0]) |
|
elif not is_array(self.items): |
|
|
|
validator = self.item_validators[0] |
|
for i, el in enumerate(v): |
|
v[i] = self.validate_element_with_indexed_name(el, validator, [i]) |
|
|
|
elif not self.free_length and len(v) != len(self.item_validators): |
|
|
|
self.raise_invalid_val(orig_v) |
|
elif self.free_length and len(v) > len(self.item_validators): |
|
|
|
self.raise_invalid_val(orig_v) |
|
else: |
|
|
|
for i, (el, validator) in enumerate(zip(v, self.item_validators)): |
|
|
|
v[i] = validator.validate_coerce(el) |
|
|
|
return v |
|
|
|
def present(self, v): |
|
if v is None: |
|
return None |
|
else: |
|
if ( |
|
self.dimensions == 2 |
|
or self.dimensions == "1-2" |
|
and v |
|
and is_array(v[0]) |
|
): |
|
|
|
|
|
v = copy.deepcopy(v) |
|
for row in v: |
|
for i, (el, validator) in enumerate(zip(row, self.item_validators)): |
|
row[i] = validator.present(el) |
|
|
|
return tuple(tuple(row) for row in v) |
|
else: |
|
|
|
v = copy.copy(v) |
|
|
|
for i, (el, validator) in enumerate(zip(v, self.item_validators)): |
|
|
|
v[i] = validator.present(el) |
|
|
|
|
|
return tuple(v) |
|
|
|
|
|
class LiteralValidator(BaseValidator): |
|
""" |
|
Validator for readonly literal values |
|
""" |
|
|
|
def __init__(self, plotly_name, parent_name, val, **kwargs): |
|
super(LiteralValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
self.val = val |
|
|
|
def validate_coerce(self, v): |
|
if v != self.val: |
|
raise ValueError( |
|
"""\ |
|
The '{plotly_name}' property of {parent_name} is read-only""".format( |
|
plotly_name=self.plotly_name, parent_name=self.parent_name |
|
) |
|
) |
|
else: |
|
return v |
|
|
|
|
|
class DashValidator(EnumeratedValidator): |
|
""" |
|
Special case validator for handling dash properties that may be specified |
|
as lists of dash lengths. These are not currently specified in the |
|
schema. |
|
|
|
"dash": { |
|
"valType": "string", |
|
"values": [ |
|
"solid", |
|
"dot", |
|
"dash", |
|
"longdash", |
|
"dashdot", |
|
"longdashdot" |
|
], |
|
"dflt": "solid", |
|
"role": "style", |
|
"editType": "style", |
|
"description": "Sets the dash style of lines. Set to a dash type |
|
string (*solid*, *dot*, *dash*, *longdash*, *dashdot*, or |
|
*longdashdot*) or a dash length list in px (eg *5px,10px,2px,2px*)." |
|
}, |
|
""" |
|
|
|
def __init__(self, plotly_name, parent_name, values, **kwargs): |
|
|
|
|
|
dash_list_regex = r"/^\d+(\.\d+)?(px|%)?((,|\s)\s*\d+(\.\d+)?(px|%)?)*$/" |
|
|
|
values = values + [dash_list_regex] |
|
|
|
|
|
super(DashValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, values=values, **kwargs |
|
) |
|
|
|
def description(self): |
|
|
|
|
|
enum_vals = [] |
|
enum_regexs = [] |
|
for v, regex in zip(self.values, self.val_regexs): |
|
if regex is not None: |
|
enum_regexs.append(regex.pattern) |
|
else: |
|
enum_vals.append(v) |
|
desc = """\ |
|
The '{name}' property is an enumeration that may be specified as:""".format( |
|
name=self.plotly_name |
|
) |
|
|
|
if enum_vals: |
|
enum_vals_str = "\n".join( |
|
textwrap.wrap( |
|
repr(enum_vals), |
|
initial_indent=" " * 12, |
|
subsequent_indent=" " * 12, |
|
break_on_hyphens=False, |
|
width=80, |
|
) |
|
) |
|
|
|
desc = ( |
|
desc |
|
+ """ |
|
- One of the following dash styles: |
|
{enum_vals_str}""".format( |
|
enum_vals_str=enum_vals_str |
|
) |
|
) |
|
|
|
desc = ( |
|
desc |
|
+ """ |
|
- A string containing a dash length list in pixels or percentages |
|
(e.g. '5px 10px 2px 2px', '5, 10, 2, 2', '10% 20% 40%', etc.) |
|
""" |
|
) |
|
return desc |
|
|
|
|
|
class ImageUriValidator(BaseValidator): |
|
_PIL = None |
|
|
|
try: |
|
_PIL = import_module("PIL") |
|
except ImportError: |
|
pass |
|
|
|
def __init__(self, plotly_name, parent_name, **kwargs): |
|
super(ImageUriValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
|
|
def description(self): |
|
|
|
desc = """\ |
|
The '{plotly_name}' property is an image URI that may be specified as: |
|
- A remote image URI string |
|
(e.g. 'http://www.somewhere.com/image.png') |
|
- A data URI image string |
|
(e.g. '') |
|
- A PIL.Image.Image object which will be immediately converted |
|
to a data URI image string |
|
See http://pillow.readthedocs.io/en/latest/reference/Image.html |
|
""".format( |
|
plotly_name=self.plotly_name |
|
) |
|
return desc |
|
|
|
def validate_coerce(self, v): |
|
if v is None: |
|
pass |
|
elif isinstance(v, str): |
|
|
|
|
|
|
|
pass |
|
elif self._PIL and isinstance(v, self._PIL.Image.Image): |
|
|
|
v = self.pil_image_to_uri(v) |
|
else: |
|
self.raise_invalid_val(v) |
|
|
|
return v |
|
|
|
@staticmethod |
|
def pil_image_to_uri(v): |
|
in_mem_file = io.BytesIO() |
|
v.save(in_mem_file, format="PNG") |
|
in_mem_file.seek(0) |
|
img_bytes = in_mem_file.read() |
|
base64_encoded_result_bytes = base64.b64encode(img_bytes) |
|
base64_encoded_result_str = base64_encoded_result_bytes.decode("ascii") |
|
v = "data:image/png;base64,{base64_encoded_result_str}".format( |
|
base64_encoded_result_str=base64_encoded_result_str |
|
) |
|
return v |
|
|
|
|
|
class CompoundValidator(BaseValidator): |
|
def __init__(self, plotly_name, parent_name, data_class_str, data_docs, **kwargs): |
|
super(CompoundValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
|
|
|
|
self.data_class_str = data_class_str |
|
self._data_class = None |
|
self.data_docs = data_docs |
|
self.module_str = CompoundValidator.compute_graph_obj_module_str( |
|
self.data_class_str, parent_name |
|
) |
|
|
|
@staticmethod |
|
def compute_graph_obj_module_str(data_class_str, parent_name): |
|
if parent_name == "frame" and data_class_str in ["Data", "Layout"]: |
|
|
|
|
|
|
|
|
|
parent_parts = parent_name.split(".") |
|
module_str = ".".join(["plotly.graph_objs"] + parent_parts[1:]) |
|
elif parent_name == "layout.template" and data_class_str == "Layout": |
|
|
|
module_str = "plotly.graph_objs" |
|
elif "layout.template.data" in parent_name: |
|
|
|
parent_name = parent_name.replace("layout.template.data.", "") |
|
if parent_name: |
|
module_str = "plotly.graph_objs." + parent_name |
|
else: |
|
module_str = "plotly.graph_objs" |
|
elif parent_name: |
|
module_str = "plotly.graph_objs." + parent_name |
|
else: |
|
module_str = "plotly.graph_objs" |
|
|
|
return module_str |
|
|
|
@property |
|
def data_class(self): |
|
if self._data_class is None: |
|
module = import_module(self.module_str) |
|
self._data_class = getattr(module, self.data_class_str) |
|
|
|
return self._data_class |
|
|
|
def description(self): |
|
|
|
desc = ( |
|
"""\ |
|
The '{plotly_name}' property is an instance of {class_str} |
|
that may be specified as: |
|
- An instance of :class:`{module_str}.{class_str}` |
|
- A dict of string/value properties that will be passed |
|
to the {class_str} constructor |
|
|
|
Supported dict properties: |
|
{constructor_params_str}""" |
|
).format( |
|
plotly_name=self.plotly_name, |
|
class_str=self.data_class_str, |
|
module_str=self.module_str, |
|
constructor_params_str=self.data_docs, |
|
) |
|
|
|
return desc |
|
|
|
def validate_coerce(self, v, skip_invalid=False, _validate=True): |
|
if v is None: |
|
v = self.data_class() |
|
|
|
elif isinstance(v, dict): |
|
v = self.data_class(v, skip_invalid=skip_invalid, _validate=_validate) |
|
|
|
elif isinstance(v, self.data_class): |
|
|
|
v = self.data_class(v) |
|
else: |
|
if skip_invalid: |
|
v = self.data_class() |
|
else: |
|
self.raise_invalid_val(v) |
|
|
|
v._plotly_name = self.plotly_name |
|
return v |
|
|
|
def present(self, v): |
|
|
|
return v |
|
|
|
|
|
class TitleValidator(CompoundValidator): |
|
""" |
|
This is a special validator to allow compound title properties |
|
(e.g. layout.title, layout.xaxis.title, etc.) to be set as strings |
|
or numbers. These strings are mapped to the 'text' property of the |
|
compound validator. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super(TitleValidator, self).__init__(*args, **kwargs) |
|
|
|
def validate_coerce(self, v, skip_invalid=False): |
|
if isinstance(v, (str, int, float)): |
|
v = {"text": v} |
|
return super(TitleValidator, self).validate_coerce(v, skip_invalid=skip_invalid) |
|
|
|
|
|
class CompoundArrayValidator(BaseValidator): |
|
def __init__(self, plotly_name, parent_name, data_class_str, data_docs, **kwargs): |
|
super(CompoundArrayValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
|
|
|
|
self.data_class_str = data_class_str |
|
self._data_class = None |
|
|
|
self.data_docs = data_docs |
|
self.module_str = CompoundValidator.compute_graph_obj_module_str( |
|
self.data_class_str, parent_name |
|
) |
|
|
|
def description(self): |
|
|
|
desc = ( |
|
"""\ |
|
The '{plotly_name}' property is a tuple of instances of |
|
{class_str} that may be specified as: |
|
- A list or tuple of instances of {module_str}.{class_str} |
|
- A list or tuple of dicts of string/value properties that |
|
will be passed to the {class_str} constructor |
|
|
|
Supported dict properties: |
|
{constructor_params_str}""" |
|
).format( |
|
plotly_name=self.plotly_name, |
|
class_str=self.data_class_str, |
|
module_str=self.module_str, |
|
constructor_params_str=self.data_docs, |
|
) |
|
|
|
return desc |
|
|
|
@property |
|
def data_class(self): |
|
if self._data_class is None: |
|
module = import_module(self.module_str) |
|
self._data_class = getattr(module, self.data_class_str) |
|
|
|
return self._data_class |
|
|
|
def validate_coerce(self, v, skip_invalid=False): |
|
|
|
if v is None: |
|
v = [] |
|
|
|
elif isinstance(v, (list, tuple)): |
|
res = [] |
|
invalid_els = [] |
|
for v_el in v: |
|
if isinstance(v_el, self.data_class): |
|
res.append(self.data_class(v_el)) |
|
elif isinstance(v_el, dict): |
|
res.append(self.data_class(v_el, skip_invalid=skip_invalid)) |
|
else: |
|
if skip_invalid: |
|
res.append(self.data_class()) |
|
else: |
|
res.append(None) |
|
invalid_els.append(v_el) |
|
|
|
if invalid_els: |
|
self.raise_invalid_elements(invalid_els) |
|
|
|
v = to_scalar_or_list(res) |
|
else: |
|
if skip_invalid: |
|
v = [] |
|
else: |
|
self.raise_invalid_val(v) |
|
|
|
return v |
|
|
|
def present(self, v): |
|
|
|
return tuple(v) |
|
|
|
|
|
class BaseDataValidator(BaseValidator): |
|
def __init__( |
|
self, class_strs_map, plotly_name, parent_name, set_uid=False, **kwargs |
|
): |
|
super(BaseDataValidator, self).__init__( |
|
plotly_name=plotly_name, parent_name=parent_name, **kwargs |
|
) |
|
|
|
self.class_strs_map = class_strs_map |
|
self._class_map = {} |
|
self.set_uid = set_uid |
|
|
|
def description(self): |
|
|
|
trace_types = str(list(self.class_strs_map.keys())) |
|
|
|
trace_types_wrapped = "\n".join( |
|
textwrap.wrap( |
|
trace_types, |
|
initial_indent=" One of: ", |
|
subsequent_indent=" " * 21, |
|
width=79 - 12, |
|
) |
|
) |
|
|
|
desc = ( |
|
"""\ |
|
The '{plotly_name}' property is a tuple of trace instances |
|
that may be specified as: |
|
- A list or tuple of trace instances |
|
(e.g. [Scatter(...), Bar(...)]) |
|
- A single trace instance |
|
(e.g. Scatter(...), Bar(...), etc.) |
|
- A list or tuple of dicts of string/value properties where: |
|
- The 'type' property specifies the trace type |
|
{trace_types} |
|
|
|
- All remaining properties are passed to the constructor of |
|
the specified trace type |
|
|
|
(e.g. [{{'type': 'scatter', ...}}, {{'type': 'bar, ...}}])""" |
|
).format(plotly_name=self.plotly_name, trace_types=trace_types_wrapped) |
|
|
|
return desc |
|
|
|
def get_trace_class(self, trace_name): |
|
|
|
if trace_name not in self._class_map: |
|
trace_module = import_module("plotly.graph_objs") |
|
trace_class_name = self.class_strs_map[trace_name] |
|
self._class_map[trace_name] = getattr(trace_module, trace_class_name) |
|
|
|
return self._class_map[trace_name] |
|
|
|
def validate_coerce(self, v, skip_invalid=False, _validate=True): |
|
from plotly.basedatatypes import BaseTraceType |
|
|
|
|
|
|
|
from plotly.graph_objs import Histogram2dcontour |
|
|
|
if v is None: |
|
v = [] |
|
else: |
|
if not isinstance(v, (list, tuple)): |
|
v = [v] |
|
|
|
res = [] |
|
invalid_els = [] |
|
for v_el in v: |
|
|
|
if isinstance(v_el, BaseTraceType): |
|
if isinstance(v_el, Histogram2dcontour): |
|
v_el = dict(type="histogram2dcontour", **v_el._props) |
|
else: |
|
v_el = v_el._props |
|
|
|
if isinstance(v_el, dict): |
|
type_in_v_el = "type" in v_el |
|
trace_type = v_el.pop("type", "scatter") |
|
|
|
if trace_type not in self.class_strs_map: |
|
if skip_invalid: |
|
|
|
trace = self.get_trace_class("scatter")( |
|
skip_invalid=skip_invalid, _validate=_validate, **v_el |
|
) |
|
res.append(trace) |
|
else: |
|
res.append(None) |
|
invalid_els.append(v_el) |
|
else: |
|
trace = self.get_trace_class(trace_type)( |
|
skip_invalid=skip_invalid, _validate=_validate, **v_el |
|
) |
|
res.append(trace) |
|
|
|
if type_in_v_el: |
|
|
|
v_el["type"] = trace_type |
|
else: |
|
if skip_invalid: |
|
|
|
trace = self.get_trace_class("scatter")() |
|
res.append(trace) |
|
else: |
|
res.append(None) |
|
invalid_els.append(v_el) |
|
|
|
if invalid_els: |
|
self.raise_invalid_elements(invalid_els) |
|
|
|
v = to_scalar_or_list(res) |
|
|
|
|
|
if self.set_uid: |
|
for trace in v: |
|
trace.uid = str(uuid.uuid4()) |
|
|
|
return v |
|
|
|
|
|
class BaseTemplateValidator(CompoundValidator): |
|
def __init__(self, plotly_name, parent_name, data_class_str, data_docs, **kwargs): |
|
|
|
super(BaseTemplateValidator, self).__init__( |
|
plotly_name=plotly_name, |
|
parent_name=parent_name, |
|
data_class_str=data_class_str, |
|
data_docs=data_docs, |
|
**kwargs, |
|
) |
|
|
|
def description(self): |
|
compound_description = super(BaseTemplateValidator, self).description() |
|
compound_description += """ |
|
- The name of a registered template where current registered templates |
|
are stored in the plotly.io.templates configuration object. The names |
|
of all registered templates can be retrieved with: |
|
>>> import plotly.io as pio |
|
>>> list(pio.templates) # doctest: +ELLIPSIS |
|
['ggplot2', 'seaborn', 'simple_white', 'plotly', 'plotly_white', ...] |
|
|
|
- A string containing multiple registered template names, joined on '+' |
|
characters (e.g. 'template1+template2'). In this case the resulting |
|
template is computed by merging together the collection of registered |
|
templates""" |
|
|
|
return compound_description |
|
|
|
def validate_coerce(self, v, skip_invalid=False): |
|
import plotly.io as pio |
|
|
|
try: |
|
|
|
|
|
if v in pio.templates: |
|
return copy.deepcopy(pio.templates[v]) |
|
|
|
|
|
elif isinstance(v, str): |
|
template_names = v.split("+") |
|
if all([name in pio.templates for name in template_names]): |
|
return pio.templates.merge_templates(*template_names) |
|
|
|
except TypeError: |
|
|
|
pass |
|
|
|
|
|
if v == {} or isinstance(v, self.data_class) and v.to_plotly_json() == {}: |
|
|
|
|
|
|
|
return self.data_class(data_scatter=[{}]) |
|
|
|
return super(BaseTemplateValidator, self).validate_coerce( |
|
v, skip_invalid=skip_invalid |
|
) |
|
|