File size: 10,842 Bytes
ab4488b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import numpy as onp
from . import numpy_wrapper as anp
from .numpy_vjps import (untake, balanced_eq, match_complex, replace_zero,
                         dot_adjoint_0, dot_adjoint_1, tensordot_adjoint_0,
                         tensordot_adjoint_1, nograd_functions)
from autograd.extend import (defjvp, defjvp_argnum, def_linear, vspace, JVPNode,
                             register_notrace)
from ..util import func
from .numpy_boxes import ArrayBox

for fun in nograd_functions:
    register_notrace(JVPNode, fun)

defjvp(func(ArrayBox.__getitem__), 'same')
defjvp(untake, 'same')

defjvp_argnum(anp.array_from_args, lambda argnum, g, ans, args, kwargs: untake(g, argnum-2, vspace(ans)))
defjvp(anp._array_from_scalar_or_array, None, None,
       lambda g, ans, args, kwargs, _: anp._array_from_scalar_or_array(args, kwargs, g))

# ----- Functions that are constant w.r.t. continuous inputs -----
defjvp(anp.nan_to_num, lambda g, ans, x: anp.where(anp.isfinite(x), g, 0.))

# ----- Binary ufuncs (linear) -----
def_linear(anp.multiply)

# ----- Binary ufuncs -----
defjvp(anp.add,        lambda g, ans, x, y : broadcast(g, ans),
                       lambda g, ans, x, y : broadcast(g, ans))
defjvp(anp.subtract,   lambda g, ans, x, y : broadcast(g, ans),
                       lambda g, ans, x, y : broadcast(-g, ans))
defjvp(anp.divide,     'same',
                       lambda g, ans, x, y : - g * x / y**2)
defjvp(anp.maximum,    lambda g, ans, x, y : g * balanced_eq(x, ans, y),
                       lambda g, ans, x, y : g * balanced_eq(y, ans, x))
defjvp(anp.minimum,    lambda g, ans, x, y : g * balanced_eq(x, ans, y),
                       lambda g, ans, x, y : g * balanced_eq(y, ans, x))
defjvp(anp.fmax,       lambda g, ans, x, y : g * balanced_eq(x, ans, y),
                       lambda g, ans, x, y : g * balanced_eq(y, ans, x))
defjvp(anp.fmin,       lambda g, ans, x, y : g * balanced_eq(x, ans, y),
                       lambda g, ans, x, y : g * balanced_eq(y, ans, x))
defjvp(anp.logaddexp,  lambda g, ans, x, y : g * anp.exp(x-ans),
                       lambda g, ans, x, y : g * anp.exp(y-ans))
defjvp(anp.logaddexp2, lambda g, ans, x, y : g * 2**(x-ans),
                       lambda g, ans, x, y : g * 2**(y-ans))
defjvp(anp.true_divide,'same',
                       lambda g, ans, x, y : - g * x / y**2)
defjvp(anp.mod,        lambda g, ans, x, y : broadcast(g, ans),
                       lambda g, ans, x, y : -g * anp.floor(x/y))
defjvp(anp.remainder,  lambda g, ans, x, y : broadcast(g, ans),
                       lambda g, ans, x, y : -g * anp.floor(x/y))
defjvp(anp.power,      lambda g, ans, x, y : g * y * x ** anp.where(y, y - 1, 1.),
                       lambda g, ans, x, y : g * anp.log(replace_zero(x, 1.)) * ans)
defjvp(anp.arctan2,    lambda g, ans, x, y : g * y / (x**2 + y**2),
                       lambda g, ans, x, y : g * -x / (x**2 + y**2))

# ----- Simple grads (linear) -----
defjvp(anp.negative,      'same')
defjvp(anp.rad2deg,       'same')
defjvp(anp.degrees,       'same')
defjvp(anp.deg2rad,       'same')
defjvp(anp.radians,       'same')
defjvp(anp.reshape,       'same')
defjvp(anp.roll,          'same')
defjvp(anp.array_split,   'same')
defjvp(anp.split,         'same')
defjvp(anp.vsplit,        'same')
defjvp(anp.hsplit,        'same')
defjvp(anp.dsplit,        'same')
defjvp(anp.ravel,         'same')
defjvp(anp.expand_dims,   'same')
defjvp(anp.squeeze,       'same')
defjvp(anp.diag,          'same')
defjvp(anp.diagonal,      'same')
defjvp(anp.make_diagonal, 'same')
defjvp(anp.flipud,        'same')
defjvp(anp.fliplr,        'same')
defjvp(anp.rot90,         'same')
defjvp(anp.trace,         'same')
defjvp(anp.full,          'same', argnums=(1,))
defjvp(anp.triu,          'same')
defjvp(anp.tril,          'same')
defjvp(anp.swapaxes,      'same')
defjvp(anp.rollaxis,      'same')
defjvp(anp.moveaxis,      'same')
defjvp(anp.broadcast_to,  'same')
def_linear(anp.cross)

# ----- Simple grads -----
defjvp(anp.abs,
    lambda g, ans, x : anp.real(g * replace_zero(anp.conj(x), 0.)) / replace_zero(ans, 1.))
defjvp(anp.fabs,        lambda g, ans, x : anp.sign(x) * g)  # fabs doesn't take complex numbers.
defjvp(anp.absolute,    lambda g, ans, x : anp.real(g * anp.conj(x)) / ans)
defjvp(anp.reciprocal,  lambda g, ans, x : - g / x**2)
defjvp(anp.exp,         lambda g, ans, x : ans * g)
defjvp(anp.exp2,        lambda g, ans, x : ans * anp.log(2) * g)
defjvp(anp.expm1,       lambda g, ans, x : (ans + 1) * g)
defjvp(anp.log,         lambda g, ans, x : g / x)
defjvp(anp.log2,        lambda g, ans, x : g / x / anp.log(2))
defjvp(anp.log10,       lambda g, ans, x : g / x / anp.log(10))
defjvp(anp.log1p,       lambda g, ans, x : g / (x + 1))
defjvp(anp.sin,         lambda g, ans, x : g * anp.cos(x))
defjvp(anp.cos,         lambda g, ans, x : - g * anp.sin(x))
defjvp(anp.tan,         lambda g, ans, x : g / anp.cos(x) **2)
defjvp(anp.arcsin,      lambda g, ans, x : g / anp.sqrt(1 - x**2))
defjvp(anp.arccos,      lambda g, ans, x :-g / anp.sqrt(1 - x**2))
defjvp(anp.arctan,      lambda g, ans, x : g / (1 + x**2))
defjvp(anp.sinh,        lambda g, ans, x : g * anp.cosh(x))
defjvp(anp.cosh,        lambda g, ans, x : g * anp.sinh(x))
defjvp(anp.tanh,        lambda g, ans, x : g / anp.cosh(x) **2)
defjvp(anp.arcsinh,     lambda g, ans, x : g / anp.sqrt(x**2 + 1))
defjvp(anp.arccosh,     lambda g, ans, x : g / anp.sqrt(x**2 - 1))
defjvp(anp.arctanh,     lambda g, ans, x : g / (1 - x**2))
defjvp(anp.square,      lambda g, ans, x : g * 2 * x)
defjvp(anp.sqrt,        lambda g, ans, x : g * 0.5 * x**-0.5)
defjvp(anp.sinc,        lambda g, ans, x : g * (anp.cos(anp.pi*x)*anp.pi*x - anp.sin(anp.pi*x))/(anp.pi*x**2))
defjvp(anp.clip,        lambda g, ans, x, a_min, a_max : g * anp.logical_and(ans != a_min, ans != a_max))
defjvp(anp.real_if_close, lambda g, ans, x : match_complex(ans, g))
defjvp(anp.real,   lambda g, ans, x   : anp.real(g))
defjvp(anp.imag,   lambda g, ans, x   : match_complex(ans, -1j * g))
defjvp(anp.conj,   lambda g, ans, x   : anp.conj(g))
defjvp(anp.angle,  lambda g, ans, x   : match_complex(ans, g * anp.conj(x * 1j) / anp.abs(x)**2))
defjvp(anp.where,  None,
       lambda g, ans, c, x=None, y=None : anp.where(c, g, anp.zeros(anp.shape(g))),
       lambda g, ans, c, x=None, y=None : anp.where(c, anp.zeros(g.shape), g))

# ----- Trickier grads -----
defjvp(anp.kron,      'same', 'same')
defjvp(anp.diff,      'same')
defjvp(anp.gradient,  'same')
defjvp(anp.repeat,    'same')
defjvp(anp.tile,      'same')
defjvp(anp.transpose, 'same')
defjvp(anp.sum,       'same')
defjvp(anp.mean,      'same')
defjvp(anp.prod, lambda g, ans, x, axis=None, keepdims=False: ans * anp.sum(g / x, axis=axis, keepdims=keepdims))
defjvp(anp.linspace, lambda g, ans, start, stop, *args, **kwargs: anp.linspace(g, 0, *args, **kwargs),
                     lambda g, ans, start, stop, *args, **kwargs: anp.linspace(0, g, *args, **kwargs))

def forward_grad_np_var(g, ans, x, axis=None, ddof=0, keepdims=False):
    if axis is None:
        num_reps = anp.size(g)
    elif isinstance(axis, int):
        num_reps = anp.shape(g)[axis]
    elif isinstance(axis, tuple):
        num_reps = anp.prod(anp.array(np.shape(g))[list(axis)])

    x_minus_mean = anp.conj(x - anp.mean(x, axis=axis, keepdims=True))
    return (2.0 * anp.sum(anp.real(g * x_minus_mean), axis=axis, keepdims=keepdims) /
            (num_reps - ddof))
defjvp(anp.var, forward_grad_np_var)

def forward_grad_np_std(g, ans, x, axis=None, ddof=0, keepdims=False):
    if axis is None:
        num_reps = anp.size(g)
    elif isinstance(axis, int):
        num_reps = anp.shape(g)[axis]
    elif isinstance(axis, tuple):
        num_reps = anp.prod(anp.array(anp.shape(g))[list(axis)])

    if num_reps <= 1:
        return anp.zeros_like(ans)
    x_minus_mean = anp.conj(x - anp.mean(x, axis=axis, keepdims=True))
    return (anp.sum(anp.real(g * x_minus_mean), axis=axis, keepdims=keepdims) /
            ((num_reps - ddof) * ans))
defjvp(anp.std, forward_grad_np_std)

def fwd_grad_chooser(g, ans, x, axis=None, keepdims=False):
    if anp.isscalar(x):
        return g
    if not keepdims:
        if isinstance(axis, int):
            ans = anp.expand_dims(ans, axis)
        elif isinstance(axis, tuple):
            for ax in sorted(axis):
                ans = anp.expand_dims(ans, ax)
    chosen_locations = x == ans
    return (anp.sum((g * chosen_locations), axis=axis, keepdims=keepdims) /
            anp.sum(chosen_locations, axis=axis, keepdims=keepdims))

defjvp(anp.max, fwd_grad_chooser)
defjvp(anp.min, fwd_grad_chooser)
defjvp(anp.amax, fwd_grad_chooser)
defjvp(anp.amin, fwd_grad_chooser)

defjvp(anp.cumsum, 'same')

def_linear(anp.inner)
def_linear(anp.matmul)
def_linear(anp.dot)
def_linear(anp.tensordot)
def_linear(anp.outer)

def_linear(dot_adjoint_0)
def_linear(dot_adjoint_1)

def_linear(tensordot_adjoint_0)
def_linear(tensordot_adjoint_1)

def fwd_grad_concatenate_args(argnum, g, ans, axis_args, kwargs):
    result = []
    for i in range(1, len(axis_args)):
        if i == argnum:
            result.append(g)
        else:
            result.append(anp.zeros_like(axis_args[i]))
    return anp.concatenate_args(axis_args[0], *result)
defjvp_argnum(anp.concatenate_args, fwd_grad_concatenate_args)

def fwd_grad_sort(g, ans, x, axis=-1, kind='quicksort', order=None):
    sort_perm = anp.argsort(x, axis, kind, order)
    return g[sort_perm]
defjvp(anp.sort, fwd_grad_sort)
if onp.lib.NumpyVersion(onp.__version__) < '2.0.0':
    defjvp(anp.msort, lambda g, ans, x: fwd_grad_sort(g, ans, x, axis=0))

def fwd_grad_partition(g, ans, x, kth, axis=-1, kind='introselect', order=None):
    partition_perm = anp.argpartition(x, kth, axis, kind, order)
    return g[partition_perm]
defjvp(anp.partition, fwd_grad_partition)

def atleast_jvpmaker(fun):
    def jvp(g, ans, *arys):
        if len(arys) > 1:
            raise NotImplementedError("Can't handle multiple arguments yet.")
        return fun(g)
    return jvp
defjvp(anp.atleast_1d, atleast_jvpmaker(anp.atleast_1d))
defjvp(anp.atleast_2d, atleast_jvpmaker(anp.atleast_2d))
defjvp(anp.atleast_3d, atleast_jvpmaker(anp.atleast_3d))

def_linear(anp.einsum)

# TODO(mattjj): can we call np.broadcast_to or a related function instead?
def broadcast(x, target):
    target_shape, target_ndim, target_dtype, target_iscomplex = anp.metadata(target)
    while anp.ndim(x) < target_ndim:
        x = anp.expand_dims(x, 0)
    for axis, size in enumerate(anp.shape(x)):
        if size == 1:
            x = anp.repeat(x, target_shape[axis], axis=axis)
    if target_iscomplex and not anp.iscomplexobj(x):
        x = x + 0j  # TODO(mattjj): this might promote the dtype
    return x

defjvp(anp.pad, lambda g, ans, array, width, mode, **kwargs:
       anp.pad(g, width, mode))