File size: 25,731 Bytes
db4a26f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 |
/* -*- indent-tabs-mode: nil; tab-width: 4; -*- */
/**
* Implementation of greenlet::Greenlet.
*
* Format with:
* clang-format -i --style=file src/greenlet/greenlet.c
*
*
* Fix missing braces with:
* clang-tidy src/greenlet/greenlet.c -fix -checks="readability-braces-around-statements"
*/
#ifndef TGREENLET_CPP
#define TGREENLET_CPP
#include "greenlet_internal.hpp"
#include "TGreenlet.hpp"
#include "TGreenletGlobals.cpp"
#include "TThreadStateDestroy.cpp"
namespace greenlet {
Greenlet::Greenlet(PyGreenlet* p)
: Greenlet(p, StackState())
{
}
Greenlet::Greenlet(PyGreenlet* p, const StackState& initial_stack)
: _self(p), stack_state(initial_stack)
{
assert(p->pimpl == nullptr);
p->pimpl = this;
}
Greenlet::~Greenlet()
{
// XXX: Can't do this. tp_clear is a virtual function, and by the
// time we're here, we've sliced off our child classes.
//this->tp_clear();
this->_self->pimpl = nullptr;
}
bool
Greenlet::force_slp_switch_error() const noexcept
{
return false;
}
void
Greenlet::release_args()
{
this->switch_args.CLEAR();
}
/**
* CAUTION: This will allocate memory and may trigger garbage
* collection and arbitrary Python code.
*/
OwnedObject
Greenlet::throw_GreenletExit_during_dealloc(const ThreadState& UNUSED(current_thread_state))
{
// If we're killed because we lost all references in the
// middle of a switch, that's ok. Don't reset the args/kwargs,
// we still want to pass them to the parent.
PyErr_SetString(mod_globs->PyExc_GreenletExit,
"Killing the greenlet because all references have vanished.");
// To get here it had to have run before
return this->g_switch();
}
inline void
Greenlet::slp_restore_state() noexcept
{
#ifdef SLP_BEFORE_RESTORE_STATE
SLP_BEFORE_RESTORE_STATE();
#endif
this->stack_state.copy_heap_to_stack(
this->thread_state()->borrow_current()->stack_state);
}
inline int
Greenlet::slp_save_state(char *const stackref) noexcept
{
// XXX: This used to happen in the middle, before saving, but
// after finding the next owner. Does that matter? This is
// only defined for Sparc/GCC where it flushes register
// windows to the stack (I think)
#ifdef SLP_BEFORE_SAVE_STATE
SLP_BEFORE_SAVE_STATE();
#endif
return this->stack_state.copy_stack_to_heap(stackref,
this->thread_state()->borrow_current()->stack_state);
}
/**
* CAUTION: This will allocate memory and may trigger garbage
* collection and arbitrary Python code.
*/
OwnedObject
Greenlet::on_switchstack_or_initialstub_failure(
Greenlet* target,
const Greenlet::switchstack_result_t& err,
const bool target_was_me,
const bool was_initial_stub)
{
// If we get here, either g_initialstub()
// failed, or g_switchstack() failed. Either one of those
// cases SHOULD leave us in the original greenlet with a valid stack.
if (!PyErr_Occurred()) {
PyErr_SetString(
PyExc_SystemError,
was_initial_stub
? "Failed to switch stacks into a greenlet for the first time."
: "Failed to switch stacks into a running greenlet.");
}
this->release_args();
if (target && !target_was_me) {
target->murder_in_place();
}
assert(!err.the_new_current_greenlet);
assert(!err.origin_greenlet);
return OwnedObject();
}
OwnedGreenlet
Greenlet::g_switchstack_success() noexcept
{
PyThreadState* tstate = PyThreadState_GET();
// restore the saved state
this->python_state >> tstate;
this->exception_state >> tstate;
// The thread state hasn't been changed yet.
ThreadState* thread_state = this->thread_state();
OwnedGreenlet result(thread_state->get_current());
thread_state->set_current(this->self());
//assert(thread_state->borrow_current().borrow() == this->_self);
return result;
}
Greenlet::switchstack_result_t
Greenlet::g_switchstack(void)
{
// if any of these assertions fail, it's likely because we
// switched away and tried to switch back to us. Early stages of
// switching are not reentrant because we re-use ``this->args()``.
// Switching away would happen if we trigger a garbage collection
// (by just using some Python APIs that happen to allocate Python
// objects) and some garbage had weakref callbacks or __del__ that
// switches (people don't write code like that by hand, but with
// gevent it's possible without realizing it)
assert(this->args() || PyErr_Occurred());
{ /* save state */
if (this->thread_state()->is_current(this->self())) {
// Hmm, nothing to do.
// TODO: Does this bypass trace events that are
// important?
return switchstack_result_t(0,
this, this->thread_state()->borrow_current());
}
BorrowedGreenlet current = this->thread_state()->borrow_current();
PyThreadState* tstate = PyThreadState_GET();
current->python_state << tstate;
current->exception_state << tstate;
this->python_state.will_switch_from(tstate);
switching_thread_state = this;
current->expose_frames();
}
assert(this->args() || PyErr_Occurred());
// If this is the first switch into a greenlet, this will
// return twice, once with 1 in the new greenlet, once with 0
// in the origin.
int err;
if (this->force_slp_switch_error()) {
err = -1;
}
else {
err = slp_switch();
}
if (err < 0) { /* error */
// Tested by
// test_greenlet.TestBrokenGreenlets.test_failed_to_slp_switch_into_running
//
// It's not clear if it's worth trying to clean up and
// continue here. Failing to switch stacks is a big deal which
// may not be recoverable (who knows what state the stack is in).
// Also, we've stolen references in preparation for calling
// ``g_switchstack_success()`` and we don't have a clean
// mechanism for backing that all out.
Py_FatalError("greenlet: Failed low-level slp_switch(). The stack is probably corrupt.");
}
// No stack-based variables are valid anymore.
// But the global is volatile so we can reload it without the
// compiler caching it from earlier.
Greenlet* greenlet_that_switched_in = switching_thread_state; // aka this
switching_thread_state = nullptr;
// except that no stack variables are valid, we would:
// assert(this == greenlet_that_switched_in);
// switchstack success is where we restore the exception state,
// etc. It returns the origin greenlet because its convenient.
OwnedGreenlet origin = greenlet_that_switched_in->g_switchstack_success();
assert(greenlet_that_switched_in->args() || PyErr_Occurred());
return switchstack_result_t(err, greenlet_that_switched_in, origin);
}
inline void
Greenlet::check_switch_allowed() const
{
// TODO: Make this take a parameter of the current greenlet,
// or current main greenlet, to make the check for
// cross-thread switching cheaper. Surely somewhere up the
// call stack we've already accessed the thread local variable.
// We expect to always have a main greenlet now; accessing the thread state
// created it. However, if we get here and cleanup has already
// begun because we're a greenlet that was running in a
// (now dead) thread, these invariants will not hold true. In
// fact, accessing `this->thread_state` may not even be possible.
// If the thread this greenlet was running in is dead,
// we'll still have a reference to a main greenlet, but the
// thread state pointer we have is bogus.
// TODO: Give the objects an API to determine if they belong
// to a dead thread.
const BorrowedMainGreenlet main_greenlet = this->find_main_greenlet_in_lineage();
if (!main_greenlet) {
throw PyErrOccurred(mod_globs->PyExc_GreenletError,
"cannot switch to a garbage collected greenlet");
}
if (!main_greenlet->thread_state()) {
throw PyErrOccurred(mod_globs->PyExc_GreenletError,
"cannot switch to a different thread (which happens to have exited)");
}
// The main greenlet we found was from the .parent lineage.
// That may or may not have any relationship to the main
// greenlet of the running thread. We can't actually access
// our this->thread_state members to try to check that,
// because it could be in the process of getting destroyed,
// but setting the main_greenlet->thread_state member to NULL
// may not be visible yet. So we need to check against the
// current thread state (once the cheaper checks are out of
// the way)
const BorrowedMainGreenlet current_main_greenlet = GET_THREAD_STATE().state().borrow_main_greenlet();
if (
// lineage main greenlet is not this thread's greenlet
current_main_greenlet != main_greenlet
|| (
// atteched to some thread
this->main_greenlet()
// XXX: Same condition as above. Was this supposed to be
// this->main_greenlet()?
&& current_main_greenlet != main_greenlet)
// switching into a known dead thread (XXX: which, if we get here,
// is bad, because we just accessed the thread state, which is
// gone!)
|| (!current_main_greenlet->thread_state())) {
// CAUTION: This may trigger memory allocations, gc, and
// arbitrary Python code.
throw PyErrOccurred(
mod_globs->PyExc_GreenletError,
"Cannot switch to a different thread\n\tCurrent: %R\n\tExpected: %R",
current_main_greenlet, main_greenlet);
}
}
const OwnedObject
Greenlet::context() const
{
using greenlet::PythonStateContext;
OwnedObject result;
if (this->is_currently_running_in_some_thread()) {
/* Currently running greenlet: context is stored in the thread state,
not the greenlet object. */
if (GET_THREAD_STATE().state().is_current(this->self())) {
result = PythonStateContext::context(PyThreadState_GET());
}
else {
throw ValueError(
"cannot get context of a "
"greenlet that is running in a different thread");
}
}
else {
/* Greenlet is not running: just return context. */
result = this->python_state.context();
}
if (!result) {
result = OwnedObject::None();
}
return result;
}
void
Greenlet::context(BorrowedObject given)
{
using greenlet::PythonStateContext;
if (!given) {
throw AttributeError("can't delete context attribute");
}
if (given.is_None()) {
/* "Empty context" is stored as NULL, not None. */
given = nullptr;
}
//checks type, incrs refcnt
greenlet::refs::OwnedContext context(given);
PyThreadState* tstate = PyThreadState_GET();
if (this->is_currently_running_in_some_thread()) {
if (!GET_THREAD_STATE().state().is_current(this->self())) {
throw ValueError("cannot set context of a greenlet"
" that is running in a different thread");
}
/* Currently running greenlet: context is stored in the thread state,
not the greenlet object. */
OwnedObject octx = OwnedObject::consuming(PythonStateContext::context(tstate));
PythonStateContext::context(tstate, context.relinquish_ownership());
}
else {
/* Greenlet is not running: just set context. Note that the
greenlet may be dead.*/
this->python_state.context() = context;
}
}
/**
* CAUTION: May invoke arbitrary Python code.
*
* Figure out what the result of ``greenlet.switch(arg, kwargs)``
* should be and transfers ownership of it to the left-hand-side.
*
* If switch() was just passed an arg tuple, then we'll just return that.
* If only keyword arguments were passed, then we'll pass the keyword
* argument dict. Otherwise, we'll create a tuple of (args, kwargs) and
* return both.
*
* CAUTION: This may allocate a new tuple object, which may
* cause the Python garbage collector to run, which in turn may
* run arbitrary Python code that switches.
*/
OwnedObject& operator<<=(OwnedObject& lhs, greenlet::SwitchingArgs& rhs) noexcept
{
// Because this may invoke arbitrary Python code, which could
// result in switching back to us, we need to get the
// arguments locally on the stack.
assert(rhs);
OwnedObject args = rhs.args();
OwnedObject kwargs = rhs.kwargs();
rhs.CLEAR();
// We shouldn't be called twice for the same switch.
assert(args || kwargs);
assert(!rhs);
if (!kwargs) {
lhs = args;
}
else if (!PyDict_Size(kwargs.borrow())) {
lhs = args;
}
else if (!PySequence_Length(args.borrow())) {
lhs = kwargs;
}
else {
// PyTuple_Pack allocates memory, may GC, may run arbitrary
// Python code.
lhs = OwnedObject::consuming(PyTuple_Pack(2, args.borrow(), kwargs.borrow()));
}
return lhs;
}
static OwnedObject
g_handle_exit(const OwnedObject& greenlet_result)
{
if (!greenlet_result && mod_globs->PyExc_GreenletExit.PyExceptionMatches()) {
/* catch and ignore GreenletExit */
PyErrFetchParam val;
PyErr_Fetch(PyErrFetchParam(), val, PyErrFetchParam());
if (!val) {
return OwnedObject::None();
}
return OwnedObject(val);
}
if (greenlet_result) {
// package the result into a 1-tuple
// PyTuple_Pack increments the reference of its arguments,
// so we always need to decref the greenlet result;
// the owner will do that.
return OwnedObject::consuming(PyTuple_Pack(1, greenlet_result.borrow()));
}
return OwnedObject();
}
/**
* May run arbitrary Python code.
*/
OwnedObject
Greenlet::g_switch_finish(const switchstack_result_t& err)
{
assert(err.the_new_current_greenlet == this);
ThreadState& state = *this->thread_state();
// Because calling the trace function could do arbitrary things,
// including switching away from this greenlet and then maybe
// switching back, we need to capture the arguments now so that
// they don't change.
OwnedObject result;
if (this->args()) {
result <<= this->args();
}
else {
assert(PyErr_Occurred());
}
assert(!this->args());
try {
// Our only caller handles the bad error case
assert(err.status >= 0);
assert(state.borrow_current() == this->self());
if (OwnedObject tracefunc = state.get_tracefunc()) {
assert(result || PyErr_Occurred());
g_calltrace(tracefunc,
result ? mod_globs->event_switch : mod_globs->event_throw,
err.origin_greenlet,
this->self());
}
// The above could have invoked arbitrary Python code, but
// it couldn't switch back to this object and *also*
// throw an exception, so the args won't have changed.
if (PyErr_Occurred()) {
// We get here if we fell of the end of the run() function
// raising an exception. The switch itself was
// successful, but the function raised.
// valgrind reports that memory allocated here can still
// be reached after a test run.
throw PyErrOccurred::from_current();
}
return result;
}
catch (const PyErrOccurred&) {
/* Turn switch errors into switch throws */
/* Turn trace errors into switch throws */
this->release_args();
throw;
}
}
void
Greenlet::g_calltrace(const OwnedObject& tracefunc,
const greenlet::refs::ImmortalEventName& event,
const BorrowedGreenlet& origin,
const BorrowedGreenlet& target)
{
PyErrPieces saved_exc;
try {
TracingGuard tracing_guard;
// TODO: We have saved the active exception (if any) that's
// about to be raised. In the 'throw' case, we could provide
// the exception to the tracefunction, which seems very helpful.
tracing_guard.CallTraceFunction(tracefunc, event, origin, target);
}
catch (const PyErrOccurred&) {
// In case of exceptions trace function is removed,
// and any existing exception is replaced with the tracing
// exception.
GET_THREAD_STATE().state().set_tracefunc(Py_None);
throw;
}
saved_exc.PyErrRestore();
assert(
(event == mod_globs->event_throw && PyErr_Occurred())
|| (event == mod_globs->event_switch && !PyErr_Occurred())
);
}
void
Greenlet::murder_in_place()
{
if (this->active()) {
assert(!this->is_currently_running_in_some_thread());
this->deactivate_and_free();
}
}
inline void
Greenlet::deactivate_and_free()
{
if (!this->active()) {
return;
}
// Throw away any saved stack.
this->stack_state = StackState();
assert(!this->stack_state.active());
// Throw away any Python references.
// We're holding a borrowed reference to the last
// frame we executed. Since we borrowed it, the
// normal traversal, clear, and dealloc functions
// ignore it, meaning it leaks. (The thread state
// object can't find it to clear it when that's
// deallocated either, because by definition if we
// got an object on this list, it wasn't
// running and the thread state doesn't have
// this frame.)
// So here, we *do* clear it.
this->python_state.tp_clear(true);
}
bool
Greenlet::belongs_to_thread(const ThreadState* thread_state) const
{
if (!this->thread_state() // not running anywhere, or thread
// exited
|| !thread_state) { // same, or there is no thread state.
return false;
}
return true;
}
void
Greenlet::deallocing_greenlet_in_thread(const ThreadState* current_thread_state)
{
/* Cannot raise an exception to kill the greenlet if
it is not running in the same thread! */
if (this->belongs_to_thread(current_thread_state)) {
assert(current_thread_state);
// To get here it had to have run before
/* Send the greenlet a GreenletExit exception. */
// We don't care about the return value, only whether an
// exception happened.
this->throw_GreenletExit_during_dealloc(*current_thread_state);
return;
}
// Not the same thread! Temporarily save the greenlet
// into its thread's deleteme list, *if* it exists.
// If that thread has already exited, and processed its pending
// cleanup, we'll never be able to clean everything up: we won't
// be able to raise an exception.
// That's mostly OK! Since we can't add it to a list, our refcount
// won't increase, and we'll go ahead with the DECREFs later.
ThreadState *const thread_state = this->thread_state();
if (thread_state) {
thread_state->delete_when_thread_running(this->self());
}
else {
// The thread is dead, we can't raise an exception.
// We need to make it look non-active, though, so that dealloc
// finishes killing it.
this->deactivate_and_free();
}
return;
}
int
Greenlet::tp_traverse(visitproc visit, void* arg)
{
int result;
if ((result = this->exception_state.tp_traverse(visit, arg)) != 0) {
return result;
}
//XXX: This is ugly. But so is handling everything having to do
//with the top frame.
bool visit_top_frame = this->was_running_in_dead_thread();
// When true, the thread is dead. Our implicit weak reference to the
// frame is now all that's left; we consider ourselves to
// strongly own it now.
if ((result = this->python_state.tp_traverse(visit, arg, visit_top_frame)) != 0) {
return result;
}
return 0;
}
int
Greenlet::tp_clear()
{
bool own_top_frame = this->was_running_in_dead_thread();
this->exception_state.tp_clear();
this->python_state.tp_clear(own_top_frame);
return 0;
}
bool Greenlet::is_currently_running_in_some_thread() const
{
return this->stack_state.active() && !this->python_state.top_frame();
}
#if GREENLET_PY312
void GREENLET_NOINLINE(Greenlet::expose_frames)()
{
if (!this->python_state.top_frame()) {
return;
}
_PyInterpreterFrame* last_complete_iframe = nullptr;
_PyInterpreterFrame* iframe = this->python_state.top_frame()->f_frame;
while (iframe) {
// We must make a copy before looking at the iframe contents,
// since iframe might point to a portion of the greenlet's C stack
// that was spilled when switching greenlets.
_PyInterpreterFrame iframe_copy;
this->stack_state.copy_from_stack(&iframe_copy, iframe, sizeof(*iframe));
if (!_PyFrame_IsIncomplete(&iframe_copy)) {
// If the iframe were OWNED_BY_CSTACK then it would always be
// incomplete. Since it's not incomplete, it's not on the C stack
// and we can access it through the original `iframe` pointer
// directly. This is important since GetFrameObject might
// lazily _create_ the frame object and we don't want the
// interpreter to lose track of it.
assert(iframe_copy.owner != FRAME_OWNED_BY_CSTACK);
// We really want to just write:
// PyFrameObject* frame = _PyFrame_GetFrameObject(iframe);
// but _PyFrame_GetFrameObject calls _PyFrame_MakeAndSetFrameObject
// which is not a visible symbol in libpython. The easiest
// way to get a public function to call it is using
// PyFrame_GetBack, which is defined as follows:
// assert(frame != NULL);
// assert(!_PyFrame_IsIncomplete(frame->f_frame));
// PyFrameObject *back = frame->f_back;
// if (back == NULL) {
// _PyInterpreterFrame *prev = frame->f_frame->previous;
// prev = _PyFrame_GetFirstComplete(prev);
// if (prev) {
// back = _PyFrame_GetFrameObject(prev);
// }
// }
// return (PyFrameObject*)Py_XNewRef(back);
if (!iframe->frame_obj) {
PyFrameObject dummy_frame;
_PyInterpreterFrame dummy_iframe;
dummy_frame.f_back = nullptr;
dummy_frame.f_frame = &dummy_iframe;
// force the iframe to be considered complete without
// needing to check its code object:
dummy_iframe.owner = FRAME_OWNED_BY_GENERATOR;
dummy_iframe.previous = iframe;
assert(!_PyFrame_IsIncomplete(&dummy_iframe));
// Drop the returned reference immediately; the iframe
// continues to hold a strong reference
Py_XDECREF(PyFrame_GetBack(&dummy_frame));
assert(iframe->frame_obj);
}
// This is a complete frame, so make the last one of those we saw
// point at it, bypassing any incomplete frames (which may have
// been on the C stack) in between the two. We're overwriting
// last_complete_iframe->previous and need that to be reversible,
// so we store the original previous ptr in the frame object
// (which we must have created on a previous iteration through
// this loop). The frame object has a bunch of storage that is
// only used when its iframe is OWNED_BY_FRAME_OBJECT, which only
// occurs when the frame object outlives the frame's execution,
// which can't have happened yet because the frame is currently
// executing as far as the interpreter is concerned. So, we can
// reuse it for our own purposes.
assert(iframe->owner == FRAME_OWNED_BY_THREAD
|| iframe->owner == FRAME_OWNED_BY_GENERATOR);
if (last_complete_iframe) {
assert(last_complete_iframe->frame_obj);
memcpy(&last_complete_iframe->frame_obj->_f_frame_data[0],
&last_complete_iframe->previous, sizeof(void *));
last_complete_iframe->previous = iframe;
}
last_complete_iframe = iframe;
}
// Frames that are OWNED_BY_FRAME_OBJECT are linked via the
// frame's f_back while all others are linked via the iframe's
// previous ptr. Since all the frames we traverse are running
// as far as the interpreter is concerned, we don't have to
// worry about the OWNED_BY_FRAME_OBJECT case.
iframe = iframe_copy.previous;
}
// Give the outermost complete iframe a null previous pointer to
// account for any potential incomplete/C-stack iframes between it
// and the actual top-of-stack
if (last_complete_iframe) {
assert(last_complete_iframe->frame_obj);
memcpy(&last_complete_iframe->frame_obj->_f_frame_data[0],
&last_complete_iframe->previous, sizeof(void *));
last_complete_iframe->previous = nullptr;
}
}
#else
void Greenlet::expose_frames()
{
}
#endif
}; // namespace greenlet
#endif
|