File size: 87,519 Bytes
db4a26f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 |
import base64
import numbers
import textwrap
import uuid
from importlib import import_module
import copy
import io
import re
import sys
import warnings
from _plotly_utils.optional_imports import get_module
# back-port of fullmatch from Py3.4+
def fullmatch(regex, string, flags=0):
"""Emulate python-3.4 re.fullmatch()."""
if "pattern" in dir(regex):
regex_string = regex.pattern
else:
regex_string = regex
return re.match("(?:" + regex_string + r")\Z", string, flags=flags)
# Utility functions
# -----------------
def to_scalar_or_list(v):
# Handle the case where 'v' is a non-native scalar-like type,
# such as numpy.float32. Without this case, the object might be
# considered numpy-convertable and therefore promoted to a
# 0-dimensional array, but we instead want it converted to a
# Python native scalar type ('float' in the example above).
# We explicitly check if is has the 'item' method, which conventionally
# converts these types to native scalars.
np = get_module("numpy", should_load=False)
pd = get_module("pandas", should_load=False)
if np and np.isscalar(v) and hasattr(v, "item"):
return v.item()
if isinstance(v, (list, tuple)):
return [to_scalar_or_list(e) for e in v]
elif np and isinstance(v, np.ndarray):
if v.ndim == 0:
return v.item()
return [to_scalar_or_list(e) for e in v]
elif pd and isinstance(v, (pd.Series, pd.Index)):
return [to_scalar_or_list(e) for e in v]
elif is_numpy_convertable(v):
return to_scalar_or_list(np.array(v))
else:
return v
def copy_to_readonly_numpy_array(v, kind=None, force_numeric=False):
"""
Convert an array-like value into a read-only numpy array
Parameters
----------
v : array like
Array like value (list, tuple, numpy array, pandas series, etc.)
kind : str or tuple of str
If specified, the numpy dtype kind (or kinds) that the array should
have, or be converted to if possible.
If not specified then let numpy infer the datatype
force_numeric : bool
If true, raise an exception if the resulting numpy array does not
have a numeric dtype (i.e. dtype.kind not in ['u', 'i', 'f'])
Returns
-------
np.ndarray
Numpy array with the 'WRITEABLE' flag set to False
"""
np = get_module("numpy")
# Don't force pandas to be loaded, we only want to know if it's already loaded
pd = get_module("pandas", should_load=False)
assert np is not None
# ### Process kind ###
if not kind:
kind = ()
elif isinstance(kind, str):
kind = (kind,)
first_kind = kind[0] if kind else None
# u: unsigned int, i: signed int, f: float
numeric_kinds = {"u", "i", "f"}
kind_default_dtypes = {
"u": "uint32",
"i": "int32",
"f": "float64",
"O": "object",
}
# Handle pandas Series and Index objects
if pd and isinstance(v, (pd.Series, pd.Index)):
if v.dtype.kind in numeric_kinds:
# Get the numeric numpy array so we use fast path below
v = v.values
elif v.dtype.kind == "M":
# Convert datetime Series/Index to numpy array of datetimes
if isinstance(v, pd.Series):
with warnings.catch_warnings():
warnings.simplefilter("ignore", FutureWarning)
# Series.dt.to_pydatetime will return Index[object]
# https://github.com/pandas-dev/pandas/pull/52459
v = np.array(v.dt.to_pydatetime())
else:
# DatetimeIndex
v = v.to_pydatetime()
elif pd and isinstance(v, pd.DataFrame) and len(set(v.dtypes)) == 1:
dtype = v.dtypes.tolist()[0]
if dtype.kind in numeric_kinds:
v = v.values
elif dtype.kind == "M":
with warnings.catch_warnings():
warnings.simplefilter("ignore", FutureWarning)
# Series.dt.to_pydatetime will return Index[object]
# https://github.com/pandas-dev/pandas/pull/52459
v = [
np.array(row.dt.to_pydatetime()).tolist() for i, row in v.iterrows()
]
if not isinstance(v, np.ndarray):
# v has its own logic on how to convert itself into a numpy array
if is_numpy_convertable(v):
return copy_to_readonly_numpy_array(
np.array(v), kind=kind, force_numeric=force_numeric
)
else:
# v is not homogenous array
v_list = [to_scalar_or_list(e) for e in v]
# Lookup dtype for requested kind, if any
dtype = kind_default_dtypes.get(first_kind, None)
# construct new array from list
new_v = np.array(v_list, order="C", dtype=dtype)
elif v.dtype.kind in numeric_kinds:
# v is a homogenous numeric array
if kind and v.dtype.kind not in kind:
# Kind(s) were specified and this array doesn't match
# Convert to the default dtype for the first kind
dtype = kind_default_dtypes.get(first_kind, None)
new_v = np.ascontiguousarray(v.astype(dtype))
else:
# Either no kind was requested or requested kind is satisfied
new_v = np.ascontiguousarray(v.copy())
else:
# v is a non-numeric homogenous array
new_v = v.copy()
# Handle force numeric param
# --------------------------
if force_numeric and new_v.dtype.kind not in numeric_kinds:
raise ValueError(
"Input value is not numeric and force_numeric parameter set to True"
)
if "U" not in kind:
# Force non-numeric arrays to have object type
# --------------------------------------------
# Here we make sure that non-numeric arrays have the object
# datatype. This works around cases like np.array([1, 2, '3']) where
# numpy converts the integers to strings and returns array of dtype
# '<U21'
if new_v.dtype.kind not in ["u", "i", "f", "O", "M"]:
new_v = np.array(v, dtype="object")
# Set new array to be read-only
# -----------------------------
new_v.flags["WRITEABLE"] = False
return new_v
def is_numpy_convertable(v):
"""
Return whether a value is meaningfully convertable to a numpy array
via 'numpy.array'
"""
return hasattr(v, "__array__") or hasattr(v, "__array_interface__")
def is_homogeneous_array(v):
"""
Return whether a value is considered to be a homogeneous array
"""
np = get_module("numpy", should_load=False)
pd = get_module("pandas", should_load=False)
if (
np
and isinstance(v, np.ndarray)
or (pd and isinstance(v, (pd.Series, pd.Index)))
):
return True
if is_numpy_convertable(v):
np = get_module("numpy", should_load=True)
if np:
v_numpy = np.array(v)
# v is essentially a scalar and so shouldn't count as an array
if v_numpy.shape == ():
return False
else:
return True # v_numpy.dtype.kind in ["u", "i", "f", "M", "U"]
return False
def is_simple_array(v):
"""
Return whether a value is considered to be an simple array
"""
return isinstance(v, (list, tuple))
def is_array(v):
"""
Return whether a value is considered to be an array
"""
return is_simple_array(v) or is_homogeneous_array(v)
def type_str(v):
"""
Return a type string of the form module.name for the input value v
"""
if not isinstance(v, type):
v = type(v)
return "'{module}.{name}'".format(module=v.__module__, name=v.__name__)
# Validators
# ----------
class BaseValidator(object):
"""
Base class for all validator classes
"""
def __init__(self, plotly_name, parent_name, role=None, **_):
"""
Construct a validator instance
Parameters
----------
plotly_name : str
Name of the property being validated
parent_name : str
Names of all of the ancestors of this property joined on '.'
characters. e.g.
plotly_name == 'range' and parent_name == 'layout.xaxis'
role : str
The role string for the property as specified in
plot-schema.json
"""
self.parent_name = parent_name
self.plotly_name = plotly_name
self.role = role
self.array_ok = False
def description(self):
"""
Returns a string that describes the values that are acceptable
to the validator
Should start with:
The '{plotly_name}' property is a...
For consistancy, string should have leading 4-space indent
"""
raise NotImplementedError()
def raise_invalid_val(self, v, inds=None):
"""
Helper method to raise an informative exception when an invalid
value is passed to the validate_coerce method.
Parameters
----------
v :
Value that was input to validate_coerce and could not be coerced
inds: list of int or None (default)
Indexes to display after property name. e.g. if self.plotly_name
is 'prop' and inds=[2, 1] then the name in the validation error
message will be 'prop[2][1]`
Raises
-------
ValueError
"""
name = self.plotly_name
if inds:
for i in inds:
name += "[" + str(i) + "]"
raise ValueError(
"""
Invalid value of type {typ} received for the '{name}' property of {pname}
Received value: {v}
{valid_clr_desc}""".format(
name=name,
pname=self.parent_name,
typ=type_str(v),
v=repr(v),
valid_clr_desc=self.description(),
)
)
def raise_invalid_elements(self, invalid_els):
if invalid_els:
raise ValueError(
"""
Invalid element(s) received for the '{name}' property of {pname}
Invalid elements include: {invalid}
{valid_clr_desc}""".format(
name=self.plotly_name,
pname=self.parent_name,
invalid=invalid_els[:10],
valid_clr_desc=self.description(),
)
)
def validate_coerce(self, v):
"""
Validate whether an input value is compatible with this property,
and coerce the value to be compatible of possible.
Parameters
----------
v
The input value to be validated
Raises
------
ValueError
if `v` cannot be coerced into a compatible form
Returns
-------
The input `v` in a form that's compatible with this property
"""
raise NotImplementedError()
def present(self, v):
"""
Convert output value of a previous call to `validate_coerce` into a
form suitable to be returned to the user on upon property
access.
Note: The value returned by present must be either immutable or an
instance of BasePlotlyType, otherwise the value could be mutated by
the user and we wouldn't get notified about the change.
Parameters
----------
v
A value that was the ouput of a previous call the
`validate_coerce` method on the same object
Returns
-------
"""
if is_homogeneous_array(v):
# Note: numpy array was already coerced into read-only form so
# we don't need to copy it here.
return v
elif is_simple_array(v):
return tuple(v)
else:
return v
class DataArrayValidator(BaseValidator):
"""
"data_array": {
"description": "An {array} of data. The value MUST be an
{array}, or we ignore it.",
"requiredOpts": [],
"otherOpts": [
"dflt"
]
},
"""
def __init__(self, plotly_name, parent_name, **kwargs):
super(DataArrayValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
self.array_ok = True
def description(self):
return """\
The '{plotly_name}' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series""".format(
plotly_name=self.plotly_name
)
def validate_coerce(self, v):
if v is None:
# Pass None through
pass
elif is_homogeneous_array(v):
v = copy_to_readonly_numpy_array(v)
elif is_simple_array(v):
v = to_scalar_or_list(v)
else:
self.raise_invalid_val(v)
return v
class EnumeratedValidator(BaseValidator):
"""
"enumerated": {
"description": "Enumerated value type. The available values are
listed in `values`.",
"requiredOpts": [
"values"
],
"otherOpts": [
"dflt",
"coerceNumber",
"arrayOk"
]
},
"""
def __init__(
self,
plotly_name,
parent_name,
values,
array_ok=False,
coerce_number=False,
**kwargs,
):
super(EnumeratedValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
# Save params
# -----------
self.values = values
self.array_ok = array_ok
# coerce_number is rarely used and not implemented
self.coerce_number = coerce_number
self.kwargs = kwargs
# Handle regular expressions
# --------------------------
# Compiled regexs
self.val_regexs = []
# regex replacements that run before the matching regex
# So far, this is only used to cast 'x1' -> 'x' for anchor-style
# enumeration properties
self.regex_replacements = []
# Loop over enumeration values
# ----------------------------
# Look for regular expressions
for v in self.values:
if v and isinstance(v, str) and v[0] == "/" and v[-1] == "/" and len(v) > 1:
# String is a regex with leading and trailing '/' character
regex_str = v[1:-1]
self.val_regexs.append(re.compile(regex_str))
self.regex_replacements.append(
EnumeratedValidator.build_regex_replacement(regex_str)
)
else:
self.val_regexs.append(None)
self.regex_replacements.append(None)
def __deepcopy__(self, memodict={}):
"""
A custom deepcopy method is needed here because compiled regex
objects don't support deepcopy
"""
cls = self.__class__
return cls(self.plotly_name, self.parent_name, values=self.values)
@staticmethod
def build_regex_replacement(regex_str):
# Example: regex_str == r"^y([2-9]|[1-9][0-9]+)?$"
#
# When we see a regular expression like the one above, we want to
# build regular expression replacement params that will remove a
# suffix of 1 from the input string ('y1' -> 'y' in this example)
#
# Why?: Regular expressions like this one are used in enumeration
# properties that refer to subplotids (e.g. layout.annotation.xref)
# The regular expressions forbid suffixes of 1, like 'x1'. But we
# want to accept 'x1' and coerce it into 'x'
#
# To be cautious, we only perform this conversion for enumerated
# values that match the anchor-style regex
match = re.match(
r"\^(\w)\(\[2\-9\]\|\[1\-9\]\[0\-9\]\+\)\?\( domain\)\?\$", regex_str
)
if match:
anchor_char = match.group(1)
return "^" + anchor_char + "1$", anchor_char
else:
return None
def perform_replacemenet(self, v):
"""
Return v with any applicable regex replacements applied
"""
if isinstance(v, str):
for repl_args in self.regex_replacements:
if repl_args:
v = re.sub(repl_args[0], repl_args[1], v)
return v
def description(self):
# Separate regular values from regular expressions
enum_vals = []
enum_regexs = []
for v, regex in zip(self.values, self.val_regexs):
if regex is not None:
enum_regexs.append(regex.pattern)
else:
enum_vals.append(v)
desc = """\
The '{name}' property is an enumeration that may be specified as:""".format(
name=self.plotly_name
)
if enum_vals:
enum_vals_str = "\n".join(
textwrap.wrap(
repr(enum_vals),
initial_indent=" " * 12,
subsequent_indent=" " * 12,
break_on_hyphens=False,
)
)
desc = (
desc
+ """
- One of the following enumeration values:
{enum_vals_str}""".format(
enum_vals_str=enum_vals_str
)
)
if enum_regexs:
enum_regexs_str = "\n".join(
textwrap.wrap(
repr(enum_regexs),
initial_indent=" " * 12,
subsequent_indent=" " * 12,
break_on_hyphens=False,
)
)
desc = (
desc
+ """
- A string that matches one of the following regular expressions:
{enum_regexs_str}""".format(
enum_regexs_str=enum_regexs_str
)
)
if self.array_ok:
desc = (
desc
+ """
- A tuple, list, or one-dimensional numpy array of the above"""
)
return desc
def in_values(self, e):
"""
Return whether a value matches one of the enumeration options
"""
is_str = isinstance(e, str)
for v, regex in zip(self.values, self.val_regexs):
if is_str and regex:
in_values = fullmatch(regex, e) is not None
# in_values = regex.fullmatch(e) is not None
else:
in_values = e == v
if in_values:
return True
return False
def validate_coerce(self, v):
if v is None:
# Pass None through
pass
elif self.array_ok and is_array(v):
v_replaced = [self.perform_replacemenet(v_el) for v_el in v]
invalid_els = [e for e in v_replaced if (not self.in_values(e))]
if invalid_els:
self.raise_invalid_elements(invalid_els[:10])
if is_homogeneous_array(v):
v = copy_to_readonly_numpy_array(v)
else:
v = to_scalar_or_list(v)
else:
v = self.perform_replacemenet(v)
if not self.in_values(v):
self.raise_invalid_val(v)
return v
class BooleanValidator(BaseValidator):
"""
"boolean": {
"description": "A boolean (true/false) value.",
"requiredOpts": [],
"otherOpts": [
"dflt"
]
},
"""
def __init__(self, plotly_name, parent_name, **kwargs):
super(BooleanValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
def description(self):
return """\
The '{plotly_name}' property must be specified as a bool
(either True, or False)""".format(
plotly_name=self.plotly_name
)
def validate_coerce(self, v):
if v is None:
# Pass None through
pass
elif not isinstance(v, bool):
self.raise_invalid_val(v)
return v
class SrcValidator(BaseValidator):
def __init__(self, plotly_name, parent_name, **kwargs):
super(SrcValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
self.chart_studio = get_module("chart_studio")
def description(self):
return """\
The '{plotly_name}' property must be specified as a string or
as a plotly.grid_objs.Column object""".format(
plotly_name=self.plotly_name
)
def validate_coerce(self, v):
if v is None:
# Pass None through
pass
elif isinstance(v, str):
pass
elif self.chart_studio and isinstance(v, self.chart_studio.grid_objs.Column):
# Convert to id string
v = v.id
else:
self.raise_invalid_val(v)
return v
class NumberValidator(BaseValidator):
"""
"number": {
"description": "A number or a numeric value (e.g. a number
inside a string). When applicable, values
greater (less) than `max` (`min`) are coerced to
the `dflt`.",
"requiredOpts": [],
"otherOpts": [
"dflt",
"min",
"max",
"arrayOk"
]
},
"""
def __init__(
self, plotly_name, parent_name, min=None, max=None, array_ok=False, **kwargs
):
super(NumberValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
# Handle min
if min is None and max is not None:
# Max was specified, so make min -inf
self.min_val = float("-inf")
else:
self.min_val = min
# Handle max
if max is None and min is not None:
# Min was specified, so make min inf
self.max_val = float("inf")
else:
self.max_val = max
if min is not None or max is not None:
self.has_min_max = True
else:
self.has_min_max = False
self.array_ok = array_ok
def description(self):
desc = """\
The '{plotly_name}' property is a number and may be specified as:""".format(
plotly_name=self.plotly_name
)
if not self.has_min_max:
desc = (
desc
+ """
- An int or float"""
)
else:
desc = (
desc
+ """
- An int or float in the interval [{min_val}, {max_val}]""".format(
min_val=self.min_val, max_val=self.max_val
)
)
if self.array_ok:
desc = (
desc
+ """
- A tuple, list, or one-dimensional numpy array of the above"""
)
return desc
def validate_coerce(self, v):
if v is None:
# Pass None through
pass
elif self.array_ok and is_homogeneous_array(v):
np = get_module("numpy")
try:
v_array = copy_to_readonly_numpy_array(v, force_numeric=True)
except (ValueError, TypeError, OverflowError):
self.raise_invalid_val(v)
# Check min/max
if self.has_min_max:
v_valid = np.logical_and(
self.min_val <= v_array, v_array <= self.max_val
)
if not np.all(v_valid):
# Grab up to the first 10 invalid values
v_invalid = np.logical_not(v_valid)
some_invalid_els = np.array(v, dtype="object")[v_invalid][
:10
].tolist()
self.raise_invalid_elements(some_invalid_els)
v = v_array # Always numeric numpy array
elif self.array_ok and is_simple_array(v):
# Check numeric
invalid_els = [e for e in v if not isinstance(e, numbers.Number)]
if invalid_els:
self.raise_invalid_elements(invalid_els[:10])
# Check min/max
if self.has_min_max:
invalid_els = [e for e in v if not (self.min_val <= e <= self.max_val)]
if invalid_els:
self.raise_invalid_elements(invalid_els[:10])
v = to_scalar_or_list(v)
else:
# Check numeric
if not isinstance(v, numbers.Number):
self.raise_invalid_val(v)
# Check min/max
if self.has_min_max:
if not (self.min_val <= v <= self.max_val):
self.raise_invalid_val(v)
return v
class IntegerValidator(BaseValidator):
"""
"integer": {
"description": "An integer or an integer inside a string. When
applicable, values greater (less) than `max`
(`min`) are coerced to the `dflt`.",
"requiredOpts": [],
"otherOpts": [
"dflt",
"min",
"max",
"extras",
"arrayOk"
]
},
"""
def __init__(
self,
plotly_name,
parent_name,
min=None,
max=None,
extras=None,
array_ok=False,
**kwargs,
):
super(IntegerValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
# Handle min
if min is None and max is not None:
# Max was specified, so make min -inf
self.min_val = -sys.maxsize - 1
else:
self.min_val = min
# Handle max
if max is None and min is not None:
# Min was specified, so make min inf
self.max_val = sys.maxsize
else:
self.max_val = max
if min is not None or max is not None:
self.has_min_max = True
else:
self.has_min_max = False
self.extras = extras if extras is not None else []
self.array_ok = array_ok
def description(self):
desc = """\
The '{plotly_name}' property is a integer and may be specified as:""".format(
plotly_name=self.plotly_name
)
if not self.has_min_max:
desc = (
desc
+ """
- An int (or float that will be cast to an int)"""
)
else:
desc = desc + (
"""
- An int (or float that will be cast to an int)
in the interval [{min_val}, {max_val}]""".format(
min_val=self.min_val, max_val=self.max_val
)
)
# Extras
if self.extras:
desc = (
desc
+ (
"""
OR exactly one of {extras} (e.g. '{eg_extra}')"""
).format(extras=self.extras, eg_extra=self.extras[-1])
)
if self.array_ok:
desc = (
desc
+ """
- A tuple, list, or one-dimensional numpy array of the above"""
)
return desc
def validate_coerce(self, v):
if v is None:
# Pass None through
pass
elif v in self.extras:
return v
elif self.array_ok and is_homogeneous_array(v):
np = get_module("numpy")
v_array = copy_to_readonly_numpy_array(
v, kind=("i", "u"), force_numeric=True
)
if v_array.dtype.kind not in ["i", "u"]:
self.raise_invalid_val(v)
# Check min/max
if self.has_min_max:
v_valid = np.logical_and(
self.min_val <= v_array, v_array <= self.max_val
)
if not np.all(v_valid):
# Grab up to the first 10 invalid values
v_invalid = np.logical_not(v_valid)
some_invalid_els = np.array(v, dtype="object")[v_invalid][
:10
].tolist()
self.raise_invalid_elements(some_invalid_els)
v = v_array
elif self.array_ok and is_simple_array(v):
# Check integer type
invalid_els = [
e for e in v if not isinstance(e, int) and e not in self.extras
]
if invalid_els:
self.raise_invalid_elements(invalid_els[:10])
# Check min/max
if self.has_min_max:
invalid_els = [
e
for e in v
if not (isinstance(e, int) and self.min_val <= e <= self.max_val)
and e not in self.extras
]
if invalid_els:
self.raise_invalid_elements(invalid_els[:10])
v = to_scalar_or_list(v)
else:
# Check int
if not isinstance(v, int):
# don't let int() cast strings to ints
self.raise_invalid_val(v)
# Check min/max
if self.has_min_max:
if not (self.min_val <= v <= self.max_val):
self.raise_invalid_val(v)
return v
class StringValidator(BaseValidator):
"""
"string": {
"description": "A string value. Numbers are converted to strings
except for attributes with `strict` set to true.",
"requiredOpts": [],
"otherOpts": [
"dflt",
"noBlank",
"strict",
"arrayOk",
"values"
]
},
"""
def __init__(
self,
plotly_name,
parent_name,
no_blank=False,
strict=False,
array_ok=False,
values=None,
**kwargs,
):
super(StringValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
self.no_blank = no_blank
self.strict = strict
self.array_ok = array_ok
self.values = values
@staticmethod
def to_str_or_unicode_or_none(v):
"""
Convert a value to a string if it's not None, a string,
or a unicode (on Python 2).
"""
if v is None or isinstance(v, str):
return v
else:
return str(v)
def description(self):
desc = """\
The '{plotly_name}' property is a string and must be specified as:""".format(
plotly_name=self.plotly_name
)
if self.no_blank:
desc = (
desc
+ """
- A non-empty string"""
)
elif self.values:
valid_str = "\n".join(
textwrap.wrap(
repr(self.values),
initial_indent=" " * 12,
subsequent_indent=" " * 12,
break_on_hyphens=False,
)
)
desc = (
desc
+ """
- One of the following strings:
{valid_str}""".format(
valid_str=valid_str
)
)
else:
desc = (
desc
+ """
- A string"""
)
if not self.strict:
desc = (
desc
+ """
- A number that will be converted to a string"""
)
if self.array_ok:
desc = (
desc
+ """
- A tuple, list, or one-dimensional numpy array of the above"""
)
return desc
def validate_coerce(self, v):
if v is None:
# Pass None through
pass
elif self.array_ok and is_array(v):
# If strict, make sure all elements are strings.
if self.strict:
invalid_els = [e for e in v if not isinstance(e, str)]
if invalid_els:
self.raise_invalid_elements(invalid_els)
if is_homogeneous_array(v):
np = get_module("numpy")
# If not strict, let numpy cast elements to strings
v = copy_to_readonly_numpy_array(v, kind="U")
# Check no_blank
if self.no_blank:
invalid_els = v[v == ""][:10].tolist()
if invalid_els:
self.raise_invalid_elements(invalid_els)
# Check values
if self.values:
invalid_inds = np.logical_not(np.isin(v, self.values))
invalid_els = v[invalid_inds][:10].tolist()
if invalid_els:
self.raise_invalid_elements(invalid_els)
elif is_simple_array(v):
if not self.strict:
v = [StringValidator.to_str_or_unicode_or_none(e) for e in v]
# Check no_blank
if self.no_blank:
invalid_els = [e for e in v if e == ""]
if invalid_els:
self.raise_invalid_elements(invalid_els)
# Check values
if self.values:
invalid_els = [e for e in v if v not in self.values]
if invalid_els:
self.raise_invalid_elements(invalid_els)
v = to_scalar_or_list(v)
else:
if self.strict:
if not isinstance(v, str):
self.raise_invalid_val(v)
else:
if isinstance(v, str):
pass
elif isinstance(v, (int, float)):
# Convert value to a string
v = str(v)
else:
self.raise_invalid_val(v)
if self.no_blank and len(v) == 0:
self.raise_invalid_val(v)
if self.values and v not in self.values:
self.raise_invalid_val(v)
return v
class ColorValidator(BaseValidator):
"""
"color": {
"description": "A string describing color. Supported formats:
- hex (e.g. '#d3d3d3')
- rgb (e.g. 'rgb(255, 0, 0)')
- rgba (e.g. 'rgb(255, 0, 0, 0.5)')
- hsl (e.g. 'hsl(0, 100%, 50%)')
- hsv (e.g. 'hsv(0, 100%, 100%)')
- named colors(full list:
http://www.w3.org/TR/css3-color/#svg-color)",
"requiredOpts": [],
"otherOpts": [
"dflt",
"arrayOk"
]
},
"""
re_hex = re.compile(r"#([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3})")
re_rgb_etc = re.compile(r"(rgb|hsl|hsv)a?\([\d.]+%?(,[\d.]+%?){2,3}\)")
re_ddk = re.compile(r"var\(\-\-.*\)")
named_colors = [
"aliceblue",
"antiquewhite",
"aqua",
"aquamarine",
"azure",
"beige",
"bisque",
"black",
"blanchedalmond",
"blue",
"blueviolet",
"brown",
"burlywood",
"cadetblue",
"chartreuse",
"chocolate",
"coral",
"cornflowerblue",
"cornsilk",
"crimson",
"cyan",
"darkblue",
"darkcyan",
"darkgoldenrod",
"darkgray",
"darkgrey",
"darkgreen",
"darkkhaki",
"darkmagenta",
"darkolivegreen",
"darkorange",
"darkorchid",
"darkred",
"darksalmon",
"darkseagreen",
"darkslateblue",
"darkslategray",
"darkslategrey",
"darkturquoise",
"darkviolet",
"deeppink",
"deepskyblue",
"dimgray",
"dimgrey",
"dodgerblue",
"firebrick",
"floralwhite",
"forestgreen",
"fuchsia",
"gainsboro",
"ghostwhite",
"gold",
"goldenrod",
"gray",
"grey",
"green",
"greenyellow",
"honeydew",
"hotpink",
"indianred",
"indigo",
"ivory",
"khaki",
"lavender",
"lavenderblush",
"lawngreen",
"lemonchiffon",
"lightblue",
"lightcoral",
"lightcyan",
"lightgoldenrodyellow",
"lightgray",
"lightgrey",
"lightgreen",
"lightpink",
"lightsalmon",
"lightseagreen",
"lightskyblue",
"lightslategray",
"lightslategrey",
"lightsteelblue",
"lightyellow",
"lime",
"limegreen",
"linen",
"magenta",
"maroon",
"mediumaquamarine",
"mediumblue",
"mediumorchid",
"mediumpurple",
"mediumseagreen",
"mediumslateblue",
"mediumspringgreen",
"mediumturquoise",
"mediumvioletred",
"midnightblue",
"mintcream",
"mistyrose",
"moccasin",
"navajowhite",
"navy",
"oldlace",
"olive",
"olivedrab",
"orange",
"orangered",
"orchid",
"palegoldenrod",
"palegreen",
"paleturquoise",
"palevioletred",
"papayawhip",
"peachpuff",
"peru",
"pink",
"plum",
"powderblue",
"purple",
"red",
"rosybrown",
"royalblue",
"rebeccapurple",
"saddlebrown",
"salmon",
"sandybrown",
"seagreen",
"seashell",
"sienna",
"silver",
"skyblue",
"slateblue",
"slategray",
"slategrey",
"snow",
"springgreen",
"steelblue",
"tan",
"teal",
"thistle",
"tomato",
"turquoise",
"violet",
"wheat",
"white",
"whitesmoke",
"yellow",
"yellowgreen",
]
def __init__(
self, plotly_name, parent_name, array_ok=False, colorscale_path=None, **kwargs
):
super(ColorValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
self.array_ok = array_ok
# colorscale_path is the path to the colorscale associated with this
# color property, or None if no such colorscale exists. Only colors
# with an associated colorscale may take on numeric values
self.colorscale_path = colorscale_path
def numbers_allowed(self):
return self.colorscale_path is not None
def description(self):
named_clrs_str = "\n".join(
textwrap.wrap(
", ".join(self.named_colors),
width=79 - 16,
initial_indent=" " * 12,
subsequent_indent=" " * 12,
)
)
valid_color_description = """\
The '{plotly_name}' property is a color and may be specified as:
- A hex string (e.g. '#ff0000')
- An rgb/rgba string (e.g. 'rgb(255,0,0)')
- An hsl/hsla string (e.g. 'hsl(0,100%,50%)')
- An hsv/hsva string (e.g. 'hsv(0,100%,100%)')
- A named CSS color:
{clrs}""".format(
plotly_name=self.plotly_name, clrs=named_clrs_str
)
if self.colorscale_path:
valid_color_description = (
valid_color_description
+ """
- A number that will be interpreted as a color
according to {colorscale_path}""".format(
colorscale_path=self.colorscale_path
)
)
if self.array_ok:
valid_color_description = (
valid_color_description
+ """
- A list or array of any of the above"""
)
return valid_color_description
def validate_coerce(self, v, should_raise=True):
if v is None:
# Pass None through
pass
elif self.array_ok and is_homogeneous_array(v):
v = copy_to_readonly_numpy_array(v)
if self.numbers_allowed() and v.dtype.kind in ["u", "i", "f"]:
# Numbers are allowed and we have an array of numbers.
# All good
pass
else:
validated_v = [self.validate_coerce(e, should_raise=False) for e in v]
invalid_els = self.find_invalid_els(v, validated_v)
if invalid_els and should_raise:
self.raise_invalid_elements(invalid_els)
# ### Check that elements have valid colors types ###
elif self.numbers_allowed() or invalid_els:
v = copy_to_readonly_numpy_array(validated_v, kind="O")
else:
v = copy_to_readonly_numpy_array(validated_v, kind="U")
elif self.array_ok and is_simple_array(v):
validated_v = [self.validate_coerce(e, should_raise=False) for e in v]
invalid_els = self.find_invalid_els(v, validated_v)
if invalid_els and should_raise:
self.raise_invalid_elements(invalid_els)
else:
v = validated_v
else:
# Validate scalar color
validated_v = self.vc_scalar(v)
if validated_v is None and should_raise:
self.raise_invalid_val(v)
v = validated_v
return v
def find_invalid_els(self, orig, validated, invalid_els=None):
"""
Helper method to find invalid elements in orig array.
Elements are invalid if their corresponding element in
the validated array is None.
This method handles deeply nested list structures
"""
if invalid_els is None:
invalid_els = []
for orig_el, validated_el in zip(orig, validated):
if is_array(orig_el):
self.find_invalid_els(orig_el, validated_el, invalid_els)
else:
if validated_el is None:
invalid_els.append(orig_el)
return invalid_els
def vc_scalar(self, v):
"""Helper to validate/coerce a scalar color"""
return ColorValidator.perform_validate_coerce(
v, allow_number=self.numbers_allowed()
)
@staticmethod
def perform_validate_coerce(v, allow_number=None):
"""
Validate, coerce, and return a single color value. If input cannot be
coerced to a valid color then return None.
Parameters
----------
v : number or str
Candidate color value
allow_number : bool
True if numbers are allowed as colors
Returns
-------
number or str or None
"""
if isinstance(v, numbers.Number) and allow_number:
# If allow_numbers then any number is ok
return v
elif not isinstance(v, str):
# If not allow_numbers then value must be a string
return None
else:
# Remove spaces so regexes don't need to bother with them.
v_normalized = v.replace(" ", "").lower()
# if ColorValidator.re_hex.fullmatch(v_normalized):
if fullmatch(ColorValidator.re_hex, v_normalized):
# valid hex color (e.g. #f34ab3)
return v
elif fullmatch(ColorValidator.re_rgb_etc, v_normalized):
# elif ColorValidator.re_rgb_etc.fullmatch(v_normalized):
# Valid rgb(a), hsl(a), hsv(a) color
# (e.g. rgba(10, 234, 200, 50%)
return v
elif fullmatch(ColorValidator.re_ddk, v_normalized):
# Valid var(--*) DDK theme variable, inspired by CSS syntax
# (e.g. var(--accent) )
# DDK will crawl & eval var(-- colors for Graph theming
return v
elif v_normalized in ColorValidator.named_colors:
# Valid named color (e.g. 'coral')
return v
else:
# Not a valid color
return None
class ColorlistValidator(BaseValidator):
"""
"colorlist": {
"description": "A list of colors. Must be an {array} containing
valid colors.",
"requiredOpts": [],
"otherOpts": [
"dflt"
]
}
"""
def __init__(self, plotly_name, parent_name, **kwargs):
super(ColorlistValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
def description(self):
return """\
The '{plotly_name}' property is a colorlist that may be specified
as a tuple, list, one-dimensional numpy array, or pandas Series of valid
color strings""".format(
plotly_name=self.plotly_name
)
def validate_coerce(self, v):
if v is None:
# Pass None through
pass
elif is_array(v):
validated_v = [
ColorValidator.perform_validate_coerce(e, allow_number=False) for e in v
]
invalid_els = [
el for el, validated_el in zip(v, validated_v) if validated_el is None
]
if invalid_els:
self.raise_invalid_elements(invalid_els)
v = to_scalar_or_list(v)
else:
self.raise_invalid_val(v)
return v
class ColorscaleValidator(BaseValidator):
"""
"colorscale": {
"description": "A Plotly colorscale either picked by a name:
(any of Greys, YlGnBu, Greens, YlOrRd, Bluered,
RdBu, Reds, Blues, Picnic, Rainbow, Portland,
Jet, Hot, Blackbody, Earth, Electric, Viridis)
customized as an {array} of 2-element {arrays}
where the first element is the normalized color
level value (starting at *0* and ending at *1*),
and the second item is a valid color string.",
"requiredOpts": [],
"otherOpts": [
"dflt"
]
},
"""
def __init__(self, plotly_name, parent_name, **kwargs):
super(ColorscaleValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
# named colorscales initialized on first use
self._named_colorscales = None
@property
def named_colorscales(self):
if self._named_colorscales is None:
import inspect
import itertools
from plotly import colors
colorscale_members = itertools.chain(
inspect.getmembers(colors.sequential),
inspect.getmembers(colors.diverging),
inspect.getmembers(colors.cyclical),
)
self._named_colorscales = {
c[0].lower(): c[1]
for c in colorscale_members
if isinstance(c, tuple)
and len(c) == 2
and isinstance(c[0], str)
and isinstance(c[1], list)
and not c[0].endswith("_r")
and not c[0].startswith("_")
}
return self._named_colorscales
def description(self):
colorscales_str = "\n".join(
textwrap.wrap(
repr(sorted(list(self.named_colorscales))),
initial_indent=" " * 12,
subsequent_indent=" " * 13,
break_on_hyphens=False,
width=80,
)
)
desc = """\
The '{plotly_name}' property is a colorscale and may be
specified as:
- A list of colors that will be spaced evenly to create the colorscale.
Many predefined colorscale lists are included in the sequential, diverging,
and cyclical modules in the plotly.colors package.
- A list of 2-element lists where the first element is the
normalized color level value (starting at 0 and ending at 1),
and the second item is a valid color string.
(e.g. [[0, 'green'], [0.5, 'red'], [1.0, 'rgb(0, 0, 255)']])
- One of the following named colorscales:
{colorscales_str}.
Appending '_r' to a named colorscale reverses it.
""".format(
plotly_name=self.plotly_name, colorscales_str=colorscales_str
)
return desc
def validate_coerce(self, v):
v_valid = False
if v is None:
v_valid = True
elif isinstance(v, str):
v_lower = v.lower()
if v_lower in self.named_colorscales:
# Convert to color list
v = self.named_colorscales[v_lower]
v_valid = True
elif v_lower.endswith("_r") and v_lower[:-2] in self.named_colorscales:
v = self.named_colorscales[v_lower[:-2]][::-1]
v_valid = True
#
if v_valid:
# Convert to list of lists colorscale
d = len(v) - 1
v = [[(1.0 * i) / (1.0 * d), x] for i, x in enumerate(v)]
elif is_array(v) and len(v) > 0:
# If firset element is a string, treat as colorsequence
if isinstance(v[0], str):
invalid_els = [
e for e in v if ColorValidator.perform_validate_coerce(e) is None
]
if len(invalid_els) == 0:
v_valid = True
# Convert to list of lists colorscale
d = len(v) - 1
v = [[(1.0 * i) / (1.0 * d), x] for i, x in enumerate(v)]
else:
invalid_els = [
e
for e in v
if (
not is_array(e)
or len(e) != 2
or not isinstance(e[0], numbers.Number)
or not (0 <= e[0] <= 1)
or not isinstance(e[1], str)
or ColorValidator.perform_validate_coerce(e[1]) is None
)
]
if len(invalid_els) == 0:
v_valid = True
# Convert to list of lists
v = [
[e[0], ColorValidator.perform_validate_coerce(e[1])] for e in v
]
if not v_valid:
self.raise_invalid_val(v)
return v
def present(self, v):
# Return-type must be immutable
if v is None:
return None
elif isinstance(v, str):
return v
else:
return tuple([tuple(e) for e in v])
class AngleValidator(BaseValidator):
"""
"angle": {
"description": "A number (in degree) between -180 and 180.",
"requiredOpts": [],
"otherOpts": [
"dflt",
"arrayOk"
]
},
"""
def __init__(self, plotly_name, parent_name, array_ok=False, **kwargs):
super(AngleValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
self.array_ok = array_ok
def description(self):
desc = """\
The '{plotly_name}' property is a angle (in degrees) that may be
specified as a number between -180 and 180{array_ok}.
Numeric values outside this range are converted to the equivalent value
(e.g. 270 is converted to -90).
""".format(
plotly_name=self.plotly_name,
array_ok=", or a list, numpy array or other iterable thereof"
if self.array_ok
else "",
)
return desc
def validate_coerce(self, v):
if v is None:
# Pass None through
pass
elif self.array_ok and is_homogeneous_array(v):
try:
v_array = copy_to_readonly_numpy_array(v, force_numeric=True)
except (ValueError, TypeError, OverflowError):
self.raise_invalid_val(v)
v = v_array # Always numeric numpy array
# Normalize v onto the interval [-180, 180)
v = (v + 180) % 360 - 180
elif self.array_ok and is_simple_array(v):
# Check numeric
invalid_els = [e for e in v if not isinstance(e, numbers.Number)]
if invalid_els:
self.raise_invalid_elements(invalid_els[:10])
v = [(x + 180) % 360 - 180 for x in to_scalar_or_list(v)]
elif not isinstance(v, numbers.Number):
self.raise_invalid_val(v)
else:
# Normalize v onto the interval [-180, 180)
v = (v + 180) % 360 - 180
return v
class SubplotidValidator(BaseValidator):
"""
"subplotid": {
"description": "An id string of a subplot type (given by dflt),
optionally followed by an integer >1. e.g. if
dflt='geo', we can have 'geo', 'geo2', 'geo3',
...",
"requiredOpts": [
"dflt"
],
"otherOpts": [
"regex"
]
}
"""
def __init__(self, plotly_name, parent_name, dflt=None, regex=None, **kwargs):
if dflt is None and regex is None:
raise ValueError("One or both of regex and deflt must be specified")
super(SubplotidValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
if dflt is not None:
self.base = dflt
else:
# e.g. regex == '/^y([2-9]|[1-9][0-9]+)?$/'
self.base = re.match(r"/\^(\w+)", regex).group(1)
self.regex = self.base + r"(\d*)"
def description(self):
desc = """\
The '{plotly_name}' property is an identifier of a particular
subplot, of type '{base}', that may be specified as the string '{base}'
optionally followed by an integer >= 1
(e.g. '{base}', '{base}1', '{base}2', '{base}3', etc.)
""".format(
plotly_name=self.plotly_name, base=self.base
)
return desc
def validate_coerce(self, v):
if v is None:
pass
elif not isinstance(v, str):
self.raise_invalid_val(v)
else:
# match = re.fullmatch(self.regex, v)
match = fullmatch(self.regex, v)
if not match:
is_valid = False
else:
digit_str = match.group(1)
if len(digit_str) > 0 and int(digit_str) == 0:
is_valid = False
elif len(digit_str) > 0 and int(digit_str) == 1:
# Remove 1 suffix (e.g. x1 -> x)
v = self.base
is_valid = True
else:
is_valid = True
if not is_valid:
self.raise_invalid_val(v)
return v
class FlaglistValidator(BaseValidator):
"""
"flaglist": {
"description": "A string representing a combination of flags
(order does not matter here). Combine any of the
available `flags` with *+*.
(e.g. ('lines+markers')). Values in `extras`
cannot be combined.",
"requiredOpts": [
"flags"
],
"otherOpts": [
"dflt",
"extras",
"arrayOk"
]
},
"""
def __init__(
self, plotly_name, parent_name, flags, extras=None, array_ok=False, **kwargs
):
super(FlaglistValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
self.flags = flags
self.extras = extras if extras is not None else []
self.array_ok = array_ok
def description(self):
desc = (
"""\
The '{plotly_name}' property is a flaglist and may be specified
as a string containing:"""
).format(plotly_name=self.plotly_name)
# Flags
desc = (
desc
+ (
"""
- Any combination of {flags} joined with '+' characters
(e.g. '{eg_flag}')"""
).format(flags=self.flags, eg_flag="+".join(self.flags[:2]))
)
# Extras
if self.extras:
desc = (
desc
+ (
"""
OR exactly one of {extras} (e.g. '{eg_extra}')"""
).format(extras=self.extras, eg_extra=self.extras[-1])
)
if self.array_ok:
desc = (
desc
+ """
- A list or array of the above"""
)
return desc
def vc_scalar(self, v):
if isinstance(v, str):
v = v.strip()
if v in self.extras:
return v
if not isinstance(v, str):
return None
# To be generous we accept flags separated on plus ('+'),
# or comma (',') and we accept whitespace around the flags
split_vals = [e.strip() for e in re.split("[,+]", v)]
# Are all flags valid names?
if all(f in self.flags for f in split_vals):
return "+".join(split_vals)
else:
return None
def validate_coerce(self, v):
if v is None:
# Pass None through
pass
elif self.array_ok and is_array(v):
# Coerce individual strings
validated_v = [self.vc_scalar(e) for e in v]
invalid_els = [
el for el, validated_el in zip(v, validated_v) if validated_el is None
]
if invalid_els:
self.raise_invalid_elements(invalid_els)
if is_homogeneous_array(v):
v = copy_to_readonly_numpy_array(validated_v, kind="U")
else:
v = to_scalar_or_list(v)
else:
validated_v = self.vc_scalar(v)
if validated_v is None:
self.raise_invalid_val(v)
v = validated_v
return v
class AnyValidator(BaseValidator):
"""
"any": {
"description": "Any type.",
"requiredOpts": [],
"otherOpts": [
"dflt",
"values",
"arrayOk"
]
},
"""
def __init__(self, plotly_name, parent_name, values=None, array_ok=False, **kwargs):
super(AnyValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
self.values = values
self.array_ok = array_ok
def description(self):
desc = """\
The '{plotly_name}' property accepts values of any type
""".format(
plotly_name=self.plotly_name
)
return desc
def validate_coerce(self, v):
if v is None:
# Pass None through
pass
elif self.array_ok and is_homogeneous_array(v):
v = copy_to_readonly_numpy_array(v, kind="O")
elif self.array_ok and is_simple_array(v):
v = to_scalar_or_list(v)
return v
class InfoArrayValidator(BaseValidator):
"""
"info_array": {
"description": "An {array} of plot information.",
"requiredOpts": [
"items"
],
"otherOpts": [
"dflt",
"freeLength",
"dimensions"
]
}
"""
def __init__(
self,
plotly_name,
parent_name,
items,
free_length=None,
dimensions=None,
**kwargs,
):
super(InfoArrayValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
self.items = items
self.dimensions = dimensions if dimensions else 1
self.free_length = free_length
# Instantiate validators for each info array element
self.item_validators = []
info_array_items = self.items if isinstance(self.items, list) else [self.items]
for i, item in enumerate(info_array_items):
element_name = "{name}[{i}]".format(name=plotly_name, i=i)
item_validator = InfoArrayValidator.build_validator(
item, element_name, parent_name
)
self.item_validators.append(item_validator)
def description(self):
# Cases
# 1) self.items is array, self.dimensions is 1
# a) free_length=True
# b) free_length=False
# 2) self.items is array, self.dimensions is 2
# (requires free_length=True)
# 3) self.items is scalar (requires free_length=True)
# a) dimensions=1
# b) dimensions=2
#
# dimensions can be set to '1-2' to indicate the both are accepted
#
desc = """\
The '{plotly_name}' property is an info array that may be specified as:\
""".format(
plotly_name=self.plotly_name
)
if isinstance(self.items, list):
# ### Case 1 ###
if self.dimensions in (1, "1-2"):
upto = " up to" if self.free_length and self.dimensions == 1 else ""
desc += """
* a list or tuple of{upto} {N} elements where:\
""".format(
upto=upto, N=len(self.item_validators)
)
for i, item_validator in enumerate(self.item_validators):
el_desc = item_validator.description().strip()
desc = (
desc
+ """
({i}) {el_desc}""".format(
i=i, el_desc=el_desc
)
)
# ### Case 2 ###
if self.dimensions in ("1-2", 2):
assert self.free_length
desc += """
* a 2D list where:"""
for i, item_validator in enumerate(self.item_validators):
# Update name for 2d
orig_name = item_validator.plotly_name
item_validator.plotly_name = "{name}[i][{i}]".format(
name=self.plotly_name, i=i
)
el_desc = item_validator.description().strip()
desc = (
desc
+ """
({i}) {el_desc}""".format(
i=i, el_desc=el_desc
)
)
item_validator.plotly_name = orig_name
else:
# ### Case 3 ###
assert self.free_length
item_validator = self.item_validators[0]
orig_name = item_validator.plotly_name
if self.dimensions in (1, "1-2"):
item_validator.plotly_name = "{name}[i]".format(name=self.plotly_name)
el_desc = item_validator.description().strip()
desc += """
* a list of elements where:
{el_desc}
""".format(
el_desc=el_desc
)
if self.dimensions in ("1-2", 2):
item_validator.plotly_name = "{name}[i][j]".format(
name=self.plotly_name
)
el_desc = item_validator.description().strip()
desc += """
* a 2D list where:
{el_desc}
""".format(
el_desc=el_desc
)
item_validator.plotly_name = orig_name
return desc
@staticmethod
def build_validator(validator_info, plotly_name, parent_name):
datatype = validator_info["valType"] # type: str
validator_classname = datatype.title().replace("_", "") + "Validator"
validator_class = eval(validator_classname)
kwargs = {
k: validator_info[k]
for k in validator_info
if k not in ["valType", "description", "role"]
}
return validator_class(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
def validate_element_with_indexed_name(self, val, validator, inds):
"""
Helper to add indexes to a validator's name, call validate_coerce on
a value, then restore the original validator name.
This makes sure that if a validation error message is raised, the
property name the user sees includes the index(es) of the offending
element.
Parameters
----------
val:
A value to be validated
validator
A validator
inds
List of one or more non-negative integers that represent the
nested index of the value being validated
Returns
-------
val
validated value
Raises
------
ValueError
if val fails validation
"""
orig_name = validator.plotly_name
new_name = self.plotly_name
for i in inds:
new_name += "[" + str(i) + "]"
validator.plotly_name = new_name
try:
val = validator.validate_coerce(val)
finally:
validator.plotly_name = orig_name
return val
def validate_coerce(self, v):
if v is None:
# Pass None through
return None
elif not is_array(v):
self.raise_invalid_val(v)
# Save off original v value to use in error reporting
orig_v = v
# Convert everything into nested lists
# This way we don't need to worry about nested numpy arrays
v = to_scalar_or_list(v)
is_v_2d = v and is_array(v[0])
if is_v_2d and self.dimensions in ("1-2", 2):
if is_array(self.items):
# e.g. 2D list as parcoords.dimensions.constraintrange
# check that all items are there for each nested element
for i, row in enumerate(v):
# Check row length
if not is_array(row) or len(row) != len(self.items):
self.raise_invalid_val(orig_v[i], [i])
for j, validator in enumerate(self.item_validators):
row[j] = self.validate_element_with_indexed_name(
v[i][j], validator, [i, j]
)
else:
# e.g. 2D list as layout.grid.subplots
# check that all elements match individual validator
validator = self.item_validators[0]
for i, row in enumerate(v):
if not is_array(row):
self.raise_invalid_val(orig_v[i], [i])
for j, el in enumerate(row):
row[j] = self.validate_element_with_indexed_name(
el, validator, [i, j]
)
elif v and self.dimensions == 2:
# e.g. 1D list passed as layout.grid.subplots
self.raise_invalid_val(orig_v[0], [0])
elif not is_array(self.items):
# e.g. 1D list passed as layout.grid.xaxes
validator = self.item_validators[0]
for i, el in enumerate(v):
v[i] = self.validate_element_with_indexed_name(el, validator, [i])
elif not self.free_length and len(v) != len(self.item_validators):
# e.g. 3 element list as layout.xaxis.range
self.raise_invalid_val(orig_v)
elif self.free_length and len(v) > len(self.item_validators):
# e.g. 4 element list as layout.updatemenu.button.args
self.raise_invalid_val(orig_v)
else:
# We have a 1D array of the correct length
for i, (el, validator) in enumerate(zip(v, self.item_validators)):
# Validate coerce elements
v[i] = validator.validate_coerce(el)
return v
def present(self, v):
if v is None:
return None
else:
if (
self.dimensions == 2
or self.dimensions == "1-2"
and v
and is_array(v[0])
):
# 2D case
v = copy.deepcopy(v)
for row in v:
for i, (el, validator) in enumerate(zip(row, self.item_validators)):
row[i] = validator.present(el)
return tuple(tuple(row) for row in v)
else:
# 1D case
v = copy.copy(v)
# Call present on each of the item validators
for i, (el, validator) in enumerate(zip(v, self.item_validators)):
# Validate coerce elements
v[i] = validator.present(el)
# Return tuple form of
return tuple(v)
class LiteralValidator(BaseValidator):
"""
Validator for readonly literal values
"""
def __init__(self, plotly_name, parent_name, val, **kwargs):
super(LiteralValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
self.val = val
def validate_coerce(self, v):
if v != self.val:
raise ValueError(
"""\
The '{plotly_name}' property of {parent_name} is read-only""".format(
plotly_name=self.plotly_name, parent_name=self.parent_name
)
)
else:
return v
class DashValidator(EnumeratedValidator):
"""
Special case validator for handling dash properties that may be specified
as lists of dash lengths. These are not currently specified in the
schema.
"dash": {
"valType": "string",
"values": [
"solid",
"dot",
"dash",
"longdash",
"dashdot",
"longdashdot"
],
"dflt": "solid",
"role": "style",
"editType": "style",
"description": "Sets the dash style of lines. Set to a dash type
string (*solid*, *dot*, *dash*, *longdash*, *dashdot*, or
*longdashdot*) or a dash length list in px (eg *5px,10px,2px,2px*)."
},
"""
def __init__(self, plotly_name, parent_name, values, **kwargs):
# Add regex to handle dash length lists
dash_list_regex = r"/^\d+(\.\d+)?(px|%)?((,|\s)\s*\d+(\.\d+)?(px|%)?)*$/"
values = values + [dash_list_regex]
# Call EnumeratedValidator superclass
super(DashValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, values=values, **kwargs
)
def description(self):
# Separate regular values from regular expressions
enum_vals = []
enum_regexs = []
for v, regex in zip(self.values, self.val_regexs):
if regex is not None:
enum_regexs.append(regex.pattern)
else:
enum_vals.append(v)
desc = """\
The '{name}' property is an enumeration that may be specified as:""".format(
name=self.plotly_name
)
if enum_vals:
enum_vals_str = "\n".join(
textwrap.wrap(
repr(enum_vals),
initial_indent=" " * 12,
subsequent_indent=" " * 12,
break_on_hyphens=False,
width=80,
)
)
desc = (
desc
+ """
- One of the following dash styles:
{enum_vals_str}""".format(
enum_vals_str=enum_vals_str
)
)
desc = (
desc
+ """
- A string containing a dash length list in pixels or percentages
(e.g. '5px 10px 2px 2px', '5, 10, 2, 2', '10% 20% 40%', etc.)
"""
)
return desc
class ImageUriValidator(BaseValidator):
_PIL = None
try:
_PIL = import_module("PIL")
except ImportError:
pass
def __init__(self, plotly_name, parent_name, **kwargs):
super(ImageUriValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
def description(self):
desc = """\
The '{plotly_name}' property is an image URI that may be specified as:
- A remote image URI string
(e.g. 'http://www.somewhere.com/image.png')
- A data URI image string
(e.g. '')
- A PIL.Image.Image object which will be immediately converted
to a data URI image string
See http://pillow.readthedocs.io/en/latest/reference/Image.html
""".format(
plotly_name=self.plotly_name
)
return desc
def validate_coerce(self, v):
if v is None:
pass
elif isinstance(v, str):
# Future possibilities:
# - Detect filesystem system paths and convert to URI
# - Validate either url or data uri
pass
elif self._PIL and isinstance(v, self._PIL.Image.Image):
# Convert PIL image to png data uri string
v = self.pil_image_to_uri(v)
else:
self.raise_invalid_val(v)
return v
@staticmethod
def pil_image_to_uri(v):
in_mem_file = io.BytesIO()
v.save(in_mem_file, format="PNG")
in_mem_file.seek(0)
img_bytes = in_mem_file.read()
base64_encoded_result_bytes = base64.b64encode(img_bytes)
base64_encoded_result_str = base64_encoded_result_bytes.decode("ascii")
v = "data:image/png;base64,{base64_encoded_result_str}".format(
base64_encoded_result_str=base64_encoded_result_str
)
return v
class CompoundValidator(BaseValidator):
def __init__(self, plotly_name, parent_name, data_class_str, data_docs, **kwargs):
super(CompoundValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
# Save element class string
self.data_class_str = data_class_str
self._data_class = None
self.data_docs = data_docs
self.module_str = CompoundValidator.compute_graph_obj_module_str(
self.data_class_str, parent_name
)
@staticmethod
def compute_graph_obj_module_str(data_class_str, parent_name):
if parent_name == "frame" and data_class_str in ["Data", "Layout"]:
# Special case. There are no graph_objs.frame.Data or
# graph_objs.frame.Layout classes. These are remapped to
# graph_objs.Data and graph_objs.Layout
parent_parts = parent_name.split(".")
module_str = ".".join(["plotly.graph_objs"] + parent_parts[1:])
elif parent_name == "layout.template" and data_class_str == "Layout":
# Remap template's layout to regular layout
module_str = "plotly.graph_objs"
elif "layout.template.data" in parent_name:
# Remap template's traces to regular traces
parent_name = parent_name.replace("layout.template.data.", "")
if parent_name:
module_str = "plotly.graph_objs." + parent_name
else:
module_str = "plotly.graph_objs"
elif parent_name:
module_str = "plotly.graph_objs." + parent_name
else:
module_str = "plotly.graph_objs"
return module_str
@property
def data_class(self):
if self._data_class is None:
module = import_module(self.module_str)
self._data_class = getattr(module, self.data_class_str)
return self._data_class
def description(self):
desc = (
"""\
The '{plotly_name}' property is an instance of {class_str}
that may be specified as:
- An instance of :class:`{module_str}.{class_str}`
- A dict of string/value properties that will be passed
to the {class_str} constructor
Supported dict properties:
{constructor_params_str}"""
).format(
plotly_name=self.plotly_name,
class_str=self.data_class_str,
module_str=self.module_str,
constructor_params_str=self.data_docs,
)
return desc
def validate_coerce(self, v, skip_invalid=False, _validate=True):
if v is None:
v = self.data_class()
elif isinstance(v, dict):
v = self.data_class(v, skip_invalid=skip_invalid, _validate=_validate)
elif isinstance(v, self.data_class):
# Copy object
v = self.data_class(v)
else:
if skip_invalid:
v = self.data_class()
else:
self.raise_invalid_val(v)
v._plotly_name = self.plotly_name
return v
def present(self, v):
# Return compound object as-is
return v
class TitleValidator(CompoundValidator):
"""
This is a special validator to allow compound title properties
(e.g. layout.title, layout.xaxis.title, etc.) to be set as strings
or numbers. These strings are mapped to the 'text' property of the
compound validator.
"""
def __init__(self, *args, **kwargs):
super(TitleValidator, self).__init__(*args, **kwargs)
def validate_coerce(self, v, skip_invalid=False):
if isinstance(v, (str, int, float)):
v = {"text": v}
return super(TitleValidator, self).validate_coerce(v, skip_invalid=skip_invalid)
class CompoundArrayValidator(BaseValidator):
def __init__(self, plotly_name, parent_name, data_class_str, data_docs, **kwargs):
super(CompoundArrayValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
# Save element class string
self.data_class_str = data_class_str
self._data_class = None
self.data_docs = data_docs
self.module_str = CompoundValidator.compute_graph_obj_module_str(
self.data_class_str, parent_name
)
def description(self):
desc = (
"""\
The '{plotly_name}' property is a tuple of instances of
{class_str} that may be specified as:
- A list or tuple of instances of {module_str}.{class_str}
- A list or tuple of dicts of string/value properties that
will be passed to the {class_str} constructor
Supported dict properties:
{constructor_params_str}"""
).format(
plotly_name=self.plotly_name,
class_str=self.data_class_str,
module_str=self.module_str,
constructor_params_str=self.data_docs,
)
return desc
@property
def data_class(self):
if self._data_class is None:
module = import_module(self.module_str)
self._data_class = getattr(module, self.data_class_str)
return self._data_class
def validate_coerce(self, v, skip_invalid=False):
if v is None:
v = []
elif isinstance(v, (list, tuple)):
res = []
invalid_els = []
for v_el in v:
if isinstance(v_el, self.data_class):
res.append(self.data_class(v_el))
elif isinstance(v_el, dict):
res.append(self.data_class(v_el, skip_invalid=skip_invalid))
else:
if skip_invalid:
res.append(self.data_class())
else:
res.append(None)
invalid_els.append(v_el)
if invalid_els:
self.raise_invalid_elements(invalid_els)
v = to_scalar_or_list(res)
else:
if skip_invalid:
v = []
else:
self.raise_invalid_val(v)
return v
def present(self, v):
# Return compound object as tuple
return tuple(v)
class BaseDataValidator(BaseValidator):
def __init__(
self, class_strs_map, plotly_name, parent_name, set_uid=False, **kwargs
):
super(BaseDataValidator, self).__init__(
plotly_name=plotly_name, parent_name=parent_name, **kwargs
)
self.class_strs_map = class_strs_map
self._class_map = {}
self.set_uid = set_uid
def description(self):
trace_types = str(list(self.class_strs_map.keys()))
trace_types_wrapped = "\n".join(
textwrap.wrap(
trace_types,
initial_indent=" One of: ",
subsequent_indent=" " * 21,
width=79 - 12,
)
)
desc = (
"""\
The '{plotly_name}' property is a tuple of trace instances
that may be specified as:
- A list or tuple of trace instances
(e.g. [Scatter(...), Bar(...)])
- A single trace instance
(e.g. Scatter(...), Bar(...), etc.)
- A list or tuple of dicts of string/value properties where:
- The 'type' property specifies the trace type
{trace_types}
- All remaining properties are passed to the constructor of
the specified trace type
(e.g. [{{'type': 'scatter', ...}}, {{'type': 'bar, ...}}])"""
).format(plotly_name=self.plotly_name, trace_types=trace_types_wrapped)
return desc
def get_trace_class(self, trace_name):
# Import trace classes
if trace_name not in self._class_map:
trace_module = import_module("plotly.graph_objs")
trace_class_name = self.class_strs_map[trace_name]
self._class_map[trace_name] = getattr(trace_module, trace_class_name)
return self._class_map[trace_name]
def validate_coerce(self, v, skip_invalid=False, _validate=True):
from plotly.basedatatypes import BaseTraceType
# Import Histogram2dcontour, this is the deprecated name of the
# Histogram2dContour trace.
from plotly.graph_objs import Histogram2dcontour
if v is None:
v = []
else:
if not isinstance(v, (list, tuple)):
v = [v]
res = []
invalid_els = []
for v_el in v:
if isinstance(v_el, BaseTraceType):
if isinstance(v_el, Histogram2dcontour):
v_el = dict(type="histogram2dcontour", **v_el._props)
else:
v_el = v_el._props
if isinstance(v_el, dict):
type_in_v_el = "type" in v_el
trace_type = v_el.pop("type", "scatter")
if trace_type not in self.class_strs_map:
if skip_invalid:
# Treat as scatter trace
trace = self.get_trace_class("scatter")(
skip_invalid=skip_invalid, _validate=_validate, **v_el
)
res.append(trace)
else:
res.append(None)
invalid_els.append(v_el)
else:
trace = self.get_trace_class(trace_type)(
skip_invalid=skip_invalid, _validate=_validate, **v_el
)
res.append(trace)
if type_in_v_el:
# Restore type in v_el
v_el["type"] = trace_type
else:
if skip_invalid:
# Add empty scatter trace
trace = self.get_trace_class("scatter")()
res.append(trace)
else:
res.append(None)
invalid_els.append(v_el)
if invalid_els:
self.raise_invalid_elements(invalid_els)
v = to_scalar_or_list(res)
# Set new UIDs
if self.set_uid:
for trace in v:
trace.uid = str(uuid.uuid4())
return v
class BaseTemplateValidator(CompoundValidator):
def __init__(self, plotly_name, parent_name, data_class_str, data_docs, **kwargs):
super(BaseTemplateValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
data_class_str=data_class_str,
data_docs=data_docs,
**kwargs,
)
def description(self):
compound_description = super(BaseTemplateValidator, self).description()
compound_description += """
- The name of a registered template where current registered templates
are stored in the plotly.io.templates configuration object. The names
of all registered templates can be retrieved with:
>>> import plotly.io as pio
>>> list(pio.templates) # doctest: +ELLIPSIS
['ggplot2', 'seaborn', 'simple_white', 'plotly', 'plotly_white', ...]
- A string containing multiple registered template names, joined on '+'
characters (e.g. 'template1+template2'). In this case the resulting
template is computed by merging together the collection of registered
templates"""
return compound_description
def validate_coerce(self, v, skip_invalid=False):
import plotly.io as pio
try:
# Check if v is a template identifier
# (could be any hashable object)
if v in pio.templates:
return copy.deepcopy(pio.templates[v])
# Otherwise, if v is a string, check to see if it consists of
# multiple template names joined on '+' characters
elif isinstance(v, str):
template_names = v.split("+")
if all([name in pio.templates for name in template_names]):
return pio.templates.merge_templates(*template_names)
except TypeError:
# v is un-hashable
pass
# Check for empty template
if v == {} or isinstance(v, self.data_class) and v.to_plotly_json() == {}:
# Replace empty template with {'data': {'scatter': [{}]}} so that we can
# tell the difference between an un-initialized template and a template
# explicitly set to empty.
return self.data_class(data_scatter=[{}])
return super(BaseTemplateValidator, self).validate_coerce(
v, skip_invalid=skip_invalid
)
|