File size: 87,519 Bytes
db4a26f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
import base64
import numbers
import textwrap
import uuid
from importlib import import_module
import copy
import io
import re
import sys
import warnings

from _plotly_utils.optional_imports import get_module


# back-port of fullmatch from Py3.4+
def fullmatch(regex, string, flags=0):
    """Emulate python-3.4 re.fullmatch()."""
    if "pattern" in dir(regex):
        regex_string = regex.pattern
    else:
        regex_string = regex
    return re.match("(?:" + regex_string + r")\Z", string, flags=flags)


# Utility functions
# -----------------
def to_scalar_or_list(v):
    # Handle the case where 'v' is a non-native scalar-like type,
    # such as numpy.float32. Without this case, the object might be
    # considered numpy-convertable and therefore promoted to a
    # 0-dimensional array, but we instead want it converted to a
    # Python native scalar type ('float' in the example above).
    # We explicitly check if is has the 'item' method, which conventionally
    # converts these types to native scalars.
    np = get_module("numpy", should_load=False)
    pd = get_module("pandas", should_load=False)
    if np and np.isscalar(v) and hasattr(v, "item"):
        return v.item()
    if isinstance(v, (list, tuple)):
        return [to_scalar_or_list(e) for e in v]
    elif np and isinstance(v, np.ndarray):
        if v.ndim == 0:
            return v.item()
        return [to_scalar_or_list(e) for e in v]
    elif pd and isinstance(v, (pd.Series, pd.Index)):
        return [to_scalar_or_list(e) for e in v]
    elif is_numpy_convertable(v):
        return to_scalar_or_list(np.array(v))
    else:
        return v


def copy_to_readonly_numpy_array(v, kind=None, force_numeric=False):
    """
    Convert an array-like value into a read-only numpy array

    Parameters
    ----------
    v : array like
        Array like value (list, tuple, numpy array, pandas series, etc.)
    kind : str or tuple of str
        If specified, the numpy dtype kind (or kinds) that the array should
        have, or be converted to if possible.
        If not specified then let numpy infer the datatype
    force_numeric : bool
        If true, raise an exception if the resulting numpy array does not
        have a numeric dtype (i.e. dtype.kind not in ['u', 'i', 'f'])
    Returns
    -------
    np.ndarray
        Numpy array with the 'WRITEABLE' flag set to False
    """
    np = get_module("numpy")

    # Don't force pandas to be loaded, we only want to know if it's already loaded
    pd = get_module("pandas", should_load=False)
    assert np is not None

    # ### Process kind ###
    if not kind:
        kind = ()
    elif isinstance(kind, str):
        kind = (kind,)

    first_kind = kind[0] if kind else None

    # u: unsigned int, i: signed int, f: float
    numeric_kinds = {"u", "i", "f"}
    kind_default_dtypes = {
        "u": "uint32",
        "i": "int32",
        "f": "float64",
        "O": "object",
    }

    # Handle pandas Series and Index objects
    if pd and isinstance(v, (pd.Series, pd.Index)):
        if v.dtype.kind in numeric_kinds:
            # Get the numeric numpy array so we use fast path below
            v = v.values
        elif v.dtype.kind == "M":
            # Convert datetime Series/Index to numpy array of datetimes
            if isinstance(v, pd.Series):
                with warnings.catch_warnings():
                    warnings.simplefilter("ignore", FutureWarning)
                    # Series.dt.to_pydatetime will return Index[object]
                    # https://github.com/pandas-dev/pandas/pull/52459
                    v = np.array(v.dt.to_pydatetime())
            else:
                # DatetimeIndex
                v = v.to_pydatetime()
    elif pd and isinstance(v, pd.DataFrame) and len(set(v.dtypes)) == 1:
        dtype = v.dtypes.tolist()[0]
        if dtype.kind in numeric_kinds:
            v = v.values
        elif dtype.kind == "M":
            with warnings.catch_warnings():
                warnings.simplefilter("ignore", FutureWarning)
                # Series.dt.to_pydatetime will return Index[object]
                # https://github.com/pandas-dev/pandas/pull/52459
                v = [
                    np.array(row.dt.to_pydatetime()).tolist() for i, row in v.iterrows()
                ]

    if not isinstance(v, np.ndarray):
        # v has its own logic on how to convert itself into a numpy array
        if is_numpy_convertable(v):
            return copy_to_readonly_numpy_array(
                np.array(v), kind=kind, force_numeric=force_numeric
            )
        else:
            # v is not homogenous array
            v_list = [to_scalar_or_list(e) for e in v]

            # Lookup dtype for requested kind, if any
            dtype = kind_default_dtypes.get(first_kind, None)

            # construct new array from list
            new_v = np.array(v_list, order="C", dtype=dtype)
    elif v.dtype.kind in numeric_kinds:
        # v is a homogenous numeric array
        if kind and v.dtype.kind not in kind:
            # Kind(s) were specified and this array doesn't match
            # Convert to the default dtype for the first kind
            dtype = kind_default_dtypes.get(first_kind, None)
            new_v = np.ascontiguousarray(v.astype(dtype))
        else:
            # Either no kind was requested or requested kind is satisfied
            new_v = np.ascontiguousarray(v.copy())
    else:
        # v is a non-numeric homogenous array
        new_v = v.copy()

    # Handle force numeric param
    # --------------------------
    if force_numeric and new_v.dtype.kind not in numeric_kinds:
        raise ValueError(
            "Input value is not numeric and force_numeric parameter set to True"
        )

    if "U" not in kind:
        # Force non-numeric arrays to have object type
        # --------------------------------------------
        # Here we make sure that non-numeric arrays have the object
        # datatype. This works around cases like np.array([1, 2, '3']) where
        # numpy converts the integers to strings and returns array of dtype
        # '<U21'
        if new_v.dtype.kind not in ["u", "i", "f", "O", "M"]:
            new_v = np.array(v, dtype="object")

    # Set new array to be read-only
    # -----------------------------
    new_v.flags["WRITEABLE"] = False

    return new_v


def is_numpy_convertable(v):
    """
    Return whether a value is meaningfully convertable to a numpy array
    via 'numpy.array'
    """
    return hasattr(v, "__array__") or hasattr(v, "__array_interface__")


def is_homogeneous_array(v):
    """
    Return whether a value is considered to be a homogeneous array
    """
    np = get_module("numpy", should_load=False)
    pd = get_module("pandas", should_load=False)
    if (
        np
        and isinstance(v, np.ndarray)
        or (pd and isinstance(v, (pd.Series, pd.Index)))
    ):
        return True
    if is_numpy_convertable(v):
        np = get_module("numpy", should_load=True)
        if np:
            v_numpy = np.array(v)
            # v is essentially a scalar and so shouldn't count as an array
            if v_numpy.shape == ():
                return False
            else:
                return True  # v_numpy.dtype.kind in ["u", "i", "f", "M", "U"]
    return False


def is_simple_array(v):
    """
    Return whether a value is considered to be an simple array
    """
    return isinstance(v, (list, tuple))


def is_array(v):
    """
    Return whether a value is considered to be an array
    """
    return is_simple_array(v) or is_homogeneous_array(v)


def type_str(v):
    """
    Return a type string of the form module.name for the input value v
    """
    if not isinstance(v, type):
        v = type(v)

    return "'{module}.{name}'".format(module=v.__module__, name=v.__name__)


# Validators
# ----------
class BaseValidator(object):
    """
    Base class for all validator classes
    """

    def __init__(self, plotly_name, parent_name, role=None, **_):
        """
        Construct a validator instance

        Parameters
        ----------
        plotly_name : str
            Name of the property being validated
        parent_name : str
            Names of all of the ancestors of this property joined on '.'
            characters. e.g.
            plotly_name == 'range' and parent_name == 'layout.xaxis'
        role : str
            The role string for the property as specified in
            plot-schema.json
        """
        self.parent_name = parent_name
        self.plotly_name = plotly_name
        self.role = role
        self.array_ok = False

    def description(self):
        """
        Returns a string that describes the values that are acceptable
        to the validator

        Should start with:
            The '{plotly_name}' property is a...

        For consistancy, string should have leading 4-space indent
        """
        raise NotImplementedError()

    def raise_invalid_val(self, v, inds=None):
        """
        Helper method to raise an informative exception when an invalid
        value is passed to the validate_coerce method.

        Parameters
        ----------
        v :
            Value that was input to validate_coerce and could not be coerced
        inds: list of int or None (default)
            Indexes to display after property name. e.g. if self.plotly_name
            is 'prop' and inds=[2, 1] then the name in the validation error
            message will be 'prop[2][1]`
        Raises
        -------
        ValueError
        """
        name = self.plotly_name
        if inds:
            for i in inds:
                name += "[" + str(i) + "]"

        raise ValueError(
            """
    Invalid value of type {typ} received for the '{name}' property of {pname}
        Received value: {v}

{valid_clr_desc}""".format(
                name=name,
                pname=self.parent_name,
                typ=type_str(v),
                v=repr(v),
                valid_clr_desc=self.description(),
            )
        )

    def raise_invalid_elements(self, invalid_els):
        if invalid_els:
            raise ValueError(
                """
    Invalid element(s) received for the '{name}' property of {pname}
        Invalid elements include: {invalid}

{valid_clr_desc}""".format(
                    name=self.plotly_name,
                    pname=self.parent_name,
                    invalid=invalid_els[:10],
                    valid_clr_desc=self.description(),
                )
            )

    def validate_coerce(self, v):
        """
        Validate whether an input value is compatible with this property,
        and coerce the value to be compatible of possible.

        Parameters
        ----------
        v
            The input value to be validated

        Raises
        ------
        ValueError
            if `v` cannot be coerced into a compatible form

        Returns
        -------
        The input `v` in a form that's compatible with this property
        """
        raise NotImplementedError()

    def present(self, v):
        """
        Convert output value of a previous call to `validate_coerce` into a
        form suitable to be returned to the user on upon property
        access.

        Note: The value returned by present must be either immutable or an
        instance of BasePlotlyType, otherwise the value could be mutated by
        the user and we wouldn't get notified about the change.

        Parameters
        ----------
        v
            A value that was the ouput of a previous call the
            `validate_coerce` method on the same object

        Returns
        -------

        """
        if is_homogeneous_array(v):
            # Note: numpy array was already coerced into read-only form so
            # we don't need to copy it here.
            return v
        elif is_simple_array(v):
            return tuple(v)
        else:
            return v


class DataArrayValidator(BaseValidator):
    """
    "data_array": {
        "description": "An {array} of data. The value MUST be an
                        {array}, or we ignore it.",
        "requiredOpts": [],
        "otherOpts": [
            "dflt"
        ]
    },
    """

    def __init__(self, plotly_name, parent_name, **kwargs):
        super(DataArrayValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )

        self.array_ok = True

    def description(self):
        return """\
    The '{plotly_name}' property is an array that may be specified as a tuple,
    list, numpy array, or pandas Series""".format(
            plotly_name=self.plotly_name
        )

    def validate_coerce(self, v):

        if v is None:
            # Pass None through
            pass
        elif is_homogeneous_array(v):
            v = copy_to_readonly_numpy_array(v)
        elif is_simple_array(v):
            v = to_scalar_or_list(v)
        else:
            self.raise_invalid_val(v)
        return v


class EnumeratedValidator(BaseValidator):
    """
    "enumerated": {
        "description": "Enumerated value type. The available values are
                        listed in `values`.",
        "requiredOpts": [
            "values"
        ],
        "otherOpts": [
            "dflt",
            "coerceNumber",
            "arrayOk"
        ]
    },
    """

    def __init__(
        self,
        plotly_name,
        parent_name,
        values,
        array_ok=False,
        coerce_number=False,
        **kwargs,
    ):
        super(EnumeratedValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )

        # Save params
        # -----------
        self.values = values
        self.array_ok = array_ok
        # coerce_number is rarely used and not implemented
        self.coerce_number = coerce_number
        self.kwargs = kwargs

        # Handle regular expressions
        # --------------------------
        # Compiled regexs
        self.val_regexs = []

        # regex replacements that run before the matching regex
        # So far, this is only used to cast 'x1' -> 'x' for anchor-style
        # enumeration properties
        self.regex_replacements = []

        # Loop over enumeration values
        # ----------------------------
        # Look for regular expressions
        for v in self.values:
            if v and isinstance(v, str) and v[0] == "/" and v[-1] == "/" and len(v) > 1:
                # String is a regex with leading and trailing '/' character
                regex_str = v[1:-1]
                self.val_regexs.append(re.compile(regex_str))
                self.regex_replacements.append(
                    EnumeratedValidator.build_regex_replacement(regex_str)
                )
            else:
                self.val_regexs.append(None)
                self.regex_replacements.append(None)

    def __deepcopy__(self, memodict={}):
        """
        A custom deepcopy method is needed here because compiled regex
        objects don't support deepcopy
        """
        cls = self.__class__
        return cls(self.plotly_name, self.parent_name, values=self.values)

    @staticmethod
    def build_regex_replacement(regex_str):
        # Example: regex_str == r"^y([2-9]|[1-9][0-9]+)?$"
        #
        # When we see a regular expression like the one above, we want to
        # build regular expression replacement params that will remove a
        # suffix of 1 from the input string ('y1' -> 'y' in this example)
        #
        # Why?: Regular expressions like this one are used in enumeration
        # properties that refer to subplotids (e.g. layout.annotation.xref)
        # The regular expressions forbid suffixes of 1, like 'x1'. But we
        # want to accept 'x1' and coerce it into 'x'
        #
        # To be cautious, we only perform this conversion for enumerated
        # values that match the anchor-style regex
        match = re.match(
            r"\^(\w)\(\[2\-9\]\|\[1\-9\]\[0\-9\]\+\)\?\( domain\)\?\$", regex_str
        )

        if match:
            anchor_char = match.group(1)
            return "^" + anchor_char + "1$", anchor_char
        else:
            return None

    def perform_replacemenet(self, v):
        """
        Return v with any applicable regex replacements applied
        """
        if isinstance(v, str):
            for repl_args in self.regex_replacements:
                if repl_args:
                    v = re.sub(repl_args[0], repl_args[1], v)

        return v

    def description(self):

        # Separate regular values from regular expressions
        enum_vals = []
        enum_regexs = []
        for v, regex in zip(self.values, self.val_regexs):
            if regex is not None:
                enum_regexs.append(regex.pattern)
            else:
                enum_vals.append(v)
        desc = """\
    The '{name}' property is an enumeration that may be specified as:""".format(
            name=self.plotly_name
        )

        if enum_vals:
            enum_vals_str = "\n".join(
                textwrap.wrap(
                    repr(enum_vals),
                    initial_indent=" " * 12,
                    subsequent_indent=" " * 12,
                    break_on_hyphens=False,
                )
            )

            desc = (
                desc
                + """
      - One of the following enumeration values:
{enum_vals_str}""".format(
                    enum_vals_str=enum_vals_str
                )
            )

        if enum_regexs:
            enum_regexs_str = "\n".join(
                textwrap.wrap(
                    repr(enum_regexs),
                    initial_indent=" " * 12,
                    subsequent_indent=" " * 12,
                    break_on_hyphens=False,
                )
            )

            desc = (
                desc
                + """
      - A string that matches one of the following regular expressions:
{enum_regexs_str}""".format(
                    enum_regexs_str=enum_regexs_str
                )
            )

        if self.array_ok:
            desc = (
                desc
                + """
      - A tuple, list, or one-dimensional numpy array of the above"""
            )

        return desc

    def in_values(self, e):
        """
        Return whether a value matches one of the enumeration options
        """
        is_str = isinstance(e, str)
        for v, regex in zip(self.values, self.val_regexs):
            if is_str and regex:
                in_values = fullmatch(regex, e) is not None
                # in_values = regex.fullmatch(e) is not None
            else:
                in_values = e == v

            if in_values:
                return True

        return False

    def validate_coerce(self, v):
        if v is None:
            # Pass None through
            pass
        elif self.array_ok and is_array(v):
            v_replaced = [self.perform_replacemenet(v_el) for v_el in v]

            invalid_els = [e for e in v_replaced if (not self.in_values(e))]
            if invalid_els:
                self.raise_invalid_elements(invalid_els[:10])

            if is_homogeneous_array(v):
                v = copy_to_readonly_numpy_array(v)
            else:
                v = to_scalar_or_list(v)
        else:
            v = self.perform_replacemenet(v)
            if not self.in_values(v):
                self.raise_invalid_val(v)
        return v


class BooleanValidator(BaseValidator):
    """
    "boolean": {
        "description": "A boolean (true/false) value.",
        "requiredOpts": [],
        "otherOpts": [
            "dflt"
        ]
    },
    """

    def __init__(self, plotly_name, parent_name, **kwargs):
        super(BooleanValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )

    def description(self):
        return """\
    The '{plotly_name}' property must be specified as a bool
    (either True, or False)""".format(
            plotly_name=self.plotly_name
        )

    def validate_coerce(self, v):
        if v is None:
            # Pass None through
            pass
        elif not isinstance(v, bool):
            self.raise_invalid_val(v)

        return v


class SrcValidator(BaseValidator):
    def __init__(self, plotly_name, parent_name, **kwargs):
        super(SrcValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )

        self.chart_studio = get_module("chart_studio")

    def description(self):
        return """\
    The '{plotly_name}' property must be specified as a string or
    as a plotly.grid_objs.Column object""".format(
            plotly_name=self.plotly_name
        )

    def validate_coerce(self, v):
        if v is None:
            # Pass None through
            pass
        elif isinstance(v, str):
            pass
        elif self.chart_studio and isinstance(v, self.chart_studio.grid_objs.Column):
            # Convert to id string
            v = v.id
        else:
            self.raise_invalid_val(v)

        return v


class NumberValidator(BaseValidator):
    """
    "number": {
        "description": "A number or a numeric value (e.g. a number
                        inside a string). When applicable, values
                        greater (less) than `max` (`min`) are coerced to
                        the `dflt`.",
        "requiredOpts": [],
        "otherOpts": [
            "dflt",
            "min",
            "max",
            "arrayOk"
        ]
    },
    """

    def __init__(
        self, plotly_name, parent_name, min=None, max=None, array_ok=False, **kwargs
    ):
        super(NumberValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )

        # Handle min
        if min is None and max is not None:
            # Max was specified, so make min -inf
            self.min_val = float("-inf")
        else:
            self.min_val = min

        # Handle max
        if max is None and min is not None:
            # Min was specified, so make min inf
            self.max_val = float("inf")
        else:
            self.max_val = max

        if min is not None or max is not None:
            self.has_min_max = True
        else:
            self.has_min_max = False

        self.array_ok = array_ok

    def description(self):
        desc = """\
    The '{plotly_name}' property is a number and may be specified as:""".format(
            plotly_name=self.plotly_name
        )

        if not self.has_min_max:
            desc = (
                desc
                + """
      - An int or float"""
            )

        else:
            desc = (
                desc
                + """
      - An int or float in the interval [{min_val}, {max_val}]""".format(
                    min_val=self.min_val, max_val=self.max_val
                )
            )

        if self.array_ok:
            desc = (
                desc
                + """
      - A tuple, list, or one-dimensional numpy array of the above"""
            )

        return desc

    def validate_coerce(self, v):
        if v is None:
            # Pass None through
            pass
        elif self.array_ok and is_homogeneous_array(v):
            np = get_module("numpy")
            try:
                v_array = copy_to_readonly_numpy_array(v, force_numeric=True)
            except (ValueError, TypeError, OverflowError):
                self.raise_invalid_val(v)

            # Check min/max
            if self.has_min_max:
                v_valid = np.logical_and(
                    self.min_val <= v_array, v_array <= self.max_val
                )

                if not np.all(v_valid):
                    # Grab up to the first 10 invalid values
                    v_invalid = np.logical_not(v_valid)
                    some_invalid_els = np.array(v, dtype="object")[v_invalid][
                        :10
                    ].tolist()

                    self.raise_invalid_elements(some_invalid_els)

            v = v_array  # Always numeric numpy array
        elif self.array_ok and is_simple_array(v):
            # Check numeric
            invalid_els = [e for e in v if not isinstance(e, numbers.Number)]

            if invalid_els:
                self.raise_invalid_elements(invalid_els[:10])

            # Check min/max
            if self.has_min_max:
                invalid_els = [e for e in v if not (self.min_val <= e <= self.max_val)]

                if invalid_els:
                    self.raise_invalid_elements(invalid_els[:10])

            v = to_scalar_or_list(v)
        else:
            # Check numeric
            if not isinstance(v, numbers.Number):
                self.raise_invalid_val(v)

            # Check min/max
            if self.has_min_max:
                if not (self.min_val <= v <= self.max_val):
                    self.raise_invalid_val(v)
        return v


class IntegerValidator(BaseValidator):
    """
    "integer": {
        "description": "An integer or an integer inside a string. When
                        applicable, values greater (less) than `max`
                        (`min`) are coerced to the `dflt`.",
        "requiredOpts": [],
        "otherOpts": [
            "dflt",
            "min",
            "max",
            "extras",
            "arrayOk"
        ]
    },
    """

    def __init__(
        self,
        plotly_name,
        parent_name,
        min=None,
        max=None,
        extras=None,
        array_ok=False,
        **kwargs,
    ):
        super(IntegerValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )

        # Handle min
        if min is None and max is not None:
            # Max was specified, so make min -inf
            self.min_val = -sys.maxsize - 1
        else:
            self.min_val = min

        # Handle max
        if max is None and min is not None:
            # Min was specified, so make min inf
            self.max_val = sys.maxsize
        else:
            self.max_val = max

        if min is not None or max is not None:
            self.has_min_max = True
        else:
            self.has_min_max = False

        self.extras = extras if extras is not None else []
        self.array_ok = array_ok

    def description(self):
        desc = """\
    The '{plotly_name}' property is a integer and may be specified as:""".format(
            plotly_name=self.plotly_name
        )

        if not self.has_min_max:
            desc = (
                desc
                + """
      - An int (or float that will be cast to an int)"""
            )
        else:
            desc = desc + (
                """
      - An int (or float that will be cast to an int)
        in the interval [{min_val}, {max_val}]""".format(
                    min_val=self.min_val, max_val=self.max_val
                )
            )

        # Extras
        if self.extras:
            desc = (
                desc
                + (
                    """
        OR exactly one of {extras} (e.g. '{eg_extra}')"""
                ).format(extras=self.extras, eg_extra=self.extras[-1])
            )

        if self.array_ok:
            desc = (
                desc
                + """
      - A tuple, list, or one-dimensional numpy array of the above"""
            )

        return desc

    def validate_coerce(self, v):
        if v is None:
            # Pass None through
            pass
        elif v in self.extras:
            return v
        elif self.array_ok and is_homogeneous_array(v):
            np = get_module("numpy")
            v_array = copy_to_readonly_numpy_array(
                v, kind=("i", "u"), force_numeric=True
            )

            if v_array.dtype.kind not in ["i", "u"]:
                self.raise_invalid_val(v)

            # Check min/max
            if self.has_min_max:
                v_valid = np.logical_and(
                    self.min_val <= v_array, v_array <= self.max_val
                )

                if not np.all(v_valid):
                    # Grab up to the first 10 invalid values
                    v_invalid = np.logical_not(v_valid)
                    some_invalid_els = np.array(v, dtype="object")[v_invalid][
                        :10
                    ].tolist()
                    self.raise_invalid_elements(some_invalid_els)

            v = v_array
        elif self.array_ok and is_simple_array(v):
            # Check integer type
            invalid_els = [
                e for e in v if not isinstance(e, int) and e not in self.extras
            ]

            if invalid_els:
                self.raise_invalid_elements(invalid_els[:10])

            # Check min/max
            if self.has_min_max:
                invalid_els = [
                    e
                    for e in v
                    if not (isinstance(e, int) and self.min_val <= e <= self.max_val)
                    and e not in self.extras
                ]

                if invalid_els:
                    self.raise_invalid_elements(invalid_els[:10])

            v = to_scalar_or_list(v)
        else:
            # Check int
            if not isinstance(v, int):
                # don't let int() cast strings to ints
                self.raise_invalid_val(v)

            # Check min/max
            if self.has_min_max:
                if not (self.min_val <= v <= self.max_val):
                    self.raise_invalid_val(v)

        return v


class StringValidator(BaseValidator):
    """
    "string": {
        "description": "A string value. Numbers are converted to strings
                        except for attributes with `strict` set to true.",
        "requiredOpts": [],
        "otherOpts": [
            "dflt",
            "noBlank",
            "strict",
            "arrayOk",
            "values"
        ]
    },
    """

    def __init__(
        self,
        plotly_name,
        parent_name,
        no_blank=False,
        strict=False,
        array_ok=False,
        values=None,
        **kwargs,
    ):
        super(StringValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )
        self.no_blank = no_blank
        self.strict = strict
        self.array_ok = array_ok
        self.values = values

    @staticmethod
    def to_str_or_unicode_or_none(v):
        """
        Convert a value to a string if it's not None, a string,
        or a unicode (on Python 2).
        """
        if v is None or isinstance(v, str):
            return v
        else:
            return str(v)

    def description(self):
        desc = """\
    The '{plotly_name}' property is a string and must be specified as:""".format(
            plotly_name=self.plotly_name
        )

        if self.no_blank:
            desc = (
                desc
                + """
      - A non-empty string"""
            )
        elif self.values:
            valid_str = "\n".join(
                textwrap.wrap(
                    repr(self.values),
                    initial_indent=" " * 12,
                    subsequent_indent=" " * 12,
                    break_on_hyphens=False,
                )
            )

            desc = (
                desc
                + """
      - One of the following strings:
{valid_str}""".format(
                    valid_str=valid_str
                )
            )
        else:
            desc = (
                desc
                + """
      - A string"""
            )

        if not self.strict:
            desc = (
                desc
                + """
      - A number that will be converted to a string"""
            )

        if self.array_ok:
            desc = (
                desc
                + """
      - A tuple, list, or one-dimensional numpy array of the above"""
            )

        return desc

    def validate_coerce(self, v):
        if v is None:
            # Pass None through
            pass
        elif self.array_ok and is_array(v):

            # If strict, make sure all elements are strings.
            if self.strict:
                invalid_els = [e for e in v if not isinstance(e, str)]
                if invalid_els:
                    self.raise_invalid_elements(invalid_els)

            if is_homogeneous_array(v):
                np = get_module("numpy")

                # If not strict, let numpy cast elements to strings
                v = copy_to_readonly_numpy_array(v, kind="U")

                # Check no_blank
                if self.no_blank:
                    invalid_els = v[v == ""][:10].tolist()
                    if invalid_els:
                        self.raise_invalid_elements(invalid_els)

                # Check values
                if self.values:
                    invalid_inds = np.logical_not(np.isin(v, self.values))
                    invalid_els = v[invalid_inds][:10].tolist()
                    if invalid_els:
                        self.raise_invalid_elements(invalid_els)
            elif is_simple_array(v):
                if not self.strict:
                    v = [StringValidator.to_str_or_unicode_or_none(e) for e in v]

                # Check no_blank
                if self.no_blank:
                    invalid_els = [e for e in v if e == ""]
                    if invalid_els:
                        self.raise_invalid_elements(invalid_els)

                # Check values
                if self.values:
                    invalid_els = [e for e in v if v not in self.values]
                    if invalid_els:
                        self.raise_invalid_elements(invalid_els)

                v = to_scalar_or_list(v)

        else:
            if self.strict:
                if not isinstance(v, str):
                    self.raise_invalid_val(v)
            else:
                if isinstance(v, str):
                    pass
                elif isinstance(v, (int, float)):
                    # Convert value to a string
                    v = str(v)
                else:
                    self.raise_invalid_val(v)

            if self.no_blank and len(v) == 0:
                self.raise_invalid_val(v)

            if self.values and v not in self.values:
                self.raise_invalid_val(v)

        return v


class ColorValidator(BaseValidator):
    """
    "color": {
        "description": "A string describing color. Supported formats:
                        - hex (e.g. '#d3d3d3')
                        - rgb (e.g. 'rgb(255, 0, 0)')
                        - rgba (e.g. 'rgb(255, 0, 0, 0.5)')
                        - hsl (e.g. 'hsl(0, 100%, 50%)')
                        - hsv (e.g. 'hsv(0, 100%, 100%)')
                        - named colors(full list:
                          http://www.w3.org/TR/css3-color/#svg-color)",
        "requiredOpts": [],
        "otherOpts": [
            "dflt",
            "arrayOk"
        ]
    },
    """

    re_hex = re.compile(r"#([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3})")
    re_rgb_etc = re.compile(r"(rgb|hsl|hsv)a?\([\d.]+%?(,[\d.]+%?){2,3}\)")
    re_ddk = re.compile(r"var\(\-\-.*\)")

    named_colors = [
        "aliceblue",
        "antiquewhite",
        "aqua",
        "aquamarine",
        "azure",
        "beige",
        "bisque",
        "black",
        "blanchedalmond",
        "blue",
        "blueviolet",
        "brown",
        "burlywood",
        "cadetblue",
        "chartreuse",
        "chocolate",
        "coral",
        "cornflowerblue",
        "cornsilk",
        "crimson",
        "cyan",
        "darkblue",
        "darkcyan",
        "darkgoldenrod",
        "darkgray",
        "darkgrey",
        "darkgreen",
        "darkkhaki",
        "darkmagenta",
        "darkolivegreen",
        "darkorange",
        "darkorchid",
        "darkred",
        "darksalmon",
        "darkseagreen",
        "darkslateblue",
        "darkslategray",
        "darkslategrey",
        "darkturquoise",
        "darkviolet",
        "deeppink",
        "deepskyblue",
        "dimgray",
        "dimgrey",
        "dodgerblue",
        "firebrick",
        "floralwhite",
        "forestgreen",
        "fuchsia",
        "gainsboro",
        "ghostwhite",
        "gold",
        "goldenrod",
        "gray",
        "grey",
        "green",
        "greenyellow",
        "honeydew",
        "hotpink",
        "indianred",
        "indigo",
        "ivory",
        "khaki",
        "lavender",
        "lavenderblush",
        "lawngreen",
        "lemonchiffon",
        "lightblue",
        "lightcoral",
        "lightcyan",
        "lightgoldenrodyellow",
        "lightgray",
        "lightgrey",
        "lightgreen",
        "lightpink",
        "lightsalmon",
        "lightseagreen",
        "lightskyblue",
        "lightslategray",
        "lightslategrey",
        "lightsteelblue",
        "lightyellow",
        "lime",
        "limegreen",
        "linen",
        "magenta",
        "maroon",
        "mediumaquamarine",
        "mediumblue",
        "mediumorchid",
        "mediumpurple",
        "mediumseagreen",
        "mediumslateblue",
        "mediumspringgreen",
        "mediumturquoise",
        "mediumvioletred",
        "midnightblue",
        "mintcream",
        "mistyrose",
        "moccasin",
        "navajowhite",
        "navy",
        "oldlace",
        "olive",
        "olivedrab",
        "orange",
        "orangered",
        "orchid",
        "palegoldenrod",
        "palegreen",
        "paleturquoise",
        "palevioletred",
        "papayawhip",
        "peachpuff",
        "peru",
        "pink",
        "plum",
        "powderblue",
        "purple",
        "red",
        "rosybrown",
        "royalblue",
        "rebeccapurple",
        "saddlebrown",
        "salmon",
        "sandybrown",
        "seagreen",
        "seashell",
        "sienna",
        "silver",
        "skyblue",
        "slateblue",
        "slategray",
        "slategrey",
        "snow",
        "springgreen",
        "steelblue",
        "tan",
        "teal",
        "thistle",
        "tomato",
        "turquoise",
        "violet",
        "wheat",
        "white",
        "whitesmoke",
        "yellow",
        "yellowgreen",
    ]

    def __init__(
        self, plotly_name, parent_name, array_ok=False, colorscale_path=None, **kwargs
    ):
        super(ColorValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )

        self.array_ok = array_ok

        # colorscale_path is the path to the colorscale associated with this
        # color property, or None if no such colorscale exists. Only colors
        # with an associated colorscale may take on numeric values
        self.colorscale_path = colorscale_path

    def numbers_allowed(self):
        return self.colorscale_path is not None

    def description(self):

        named_clrs_str = "\n".join(
            textwrap.wrap(
                ", ".join(self.named_colors),
                width=79 - 16,
                initial_indent=" " * 12,
                subsequent_indent=" " * 12,
            )
        )

        valid_color_description = """\
    The '{plotly_name}' property is a color and may be specified as:
      - A hex string (e.g. '#ff0000')
      - An rgb/rgba string (e.g. 'rgb(255,0,0)')
      - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')
      - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')
      - A named CSS color:
{clrs}""".format(
            plotly_name=self.plotly_name, clrs=named_clrs_str
        )

        if self.colorscale_path:
            valid_color_description = (
                valid_color_description
                + """
      - A number that will be interpreted as a color
        according to {colorscale_path}""".format(
                    colorscale_path=self.colorscale_path
                )
            )

        if self.array_ok:
            valid_color_description = (
                valid_color_description
                + """
      - A list or array of any of the above"""
            )

        return valid_color_description

    def validate_coerce(self, v, should_raise=True):
        if v is None:
            # Pass None through
            pass
        elif self.array_ok and is_homogeneous_array(v):
            v = copy_to_readonly_numpy_array(v)
            if self.numbers_allowed() and v.dtype.kind in ["u", "i", "f"]:
                # Numbers are allowed and we have an array of numbers.
                # All good
                pass
            else:
                validated_v = [self.validate_coerce(e, should_raise=False) for e in v]

                invalid_els = self.find_invalid_els(v, validated_v)

                if invalid_els and should_raise:
                    self.raise_invalid_elements(invalid_els)

                # ### Check that elements have valid colors types ###
                elif self.numbers_allowed() or invalid_els:
                    v = copy_to_readonly_numpy_array(validated_v, kind="O")
                else:
                    v = copy_to_readonly_numpy_array(validated_v, kind="U")
        elif self.array_ok and is_simple_array(v):
            validated_v = [self.validate_coerce(e, should_raise=False) for e in v]

            invalid_els = self.find_invalid_els(v, validated_v)

            if invalid_els and should_raise:
                self.raise_invalid_elements(invalid_els)
            else:
                v = validated_v
        else:
            # Validate scalar color
            validated_v = self.vc_scalar(v)
            if validated_v is None and should_raise:
                self.raise_invalid_val(v)

            v = validated_v

        return v

    def find_invalid_els(self, orig, validated, invalid_els=None):
        """
        Helper method to find invalid elements in orig array.
        Elements are invalid if their corresponding element in
        the validated array is None.

        This method handles deeply nested list structures
        """
        if invalid_els is None:
            invalid_els = []

        for orig_el, validated_el in zip(orig, validated):
            if is_array(orig_el):
                self.find_invalid_els(orig_el, validated_el, invalid_els)
            else:
                if validated_el is None:
                    invalid_els.append(orig_el)

        return invalid_els

    def vc_scalar(self, v):
        """Helper to validate/coerce a scalar color"""
        return ColorValidator.perform_validate_coerce(
            v, allow_number=self.numbers_allowed()
        )

    @staticmethod
    def perform_validate_coerce(v, allow_number=None):
        """
        Validate, coerce, and return a single color value. If input cannot be
        coerced to a valid color then return None.

        Parameters
        ----------
        v : number or str
            Candidate color value

        allow_number : bool
            True if numbers are allowed as colors

        Returns
        -------
        number or str or None
        """

        if isinstance(v, numbers.Number) and allow_number:
            # If allow_numbers then any number is ok
            return v
        elif not isinstance(v, str):
            # If not allow_numbers then value must be a string
            return None
        else:
            # Remove spaces so regexes don't need to bother with them.
            v_normalized = v.replace(" ", "").lower()

            # if ColorValidator.re_hex.fullmatch(v_normalized):
            if fullmatch(ColorValidator.re_hex, v_normalized):
                # valid hex color (e.g. #f34ab3)
                return v
            elif fullmatch(ColorValidator.re_rgb_etc, v_normalized):
                # elif ColorValidator.re_rgb_etc.fullmatch(v_normalized):
                # Valid rgb(a), hsl(a), hsv(a) color
                # (e.g. rgba(10, 234, 200, 50%)
                return v
            elif fullmatch(ColorValidator.re_ddk, v_normalized):
                # Valid var(--*) DDK theme variable, inspired by CSS syntax
                # (e.g. var(--accent) )
                # DDK will crawl & eval var(-- colors for Graph theming
                return v
            elif v_normalized in ColorValidator.named_colors:
                # Valid named color (e.g. 'coral')
                return v
            else:
                # Not a valid color
                return None


class ColorlistValidator(BaseValidator):
    """
    "colorlist": {
      "description": "A list of colors. Must be an {array} containing
                      valid colors.",
      "requiredOpts": [],
      "otherOpts": [
        "dflt"
      ]
    }
    """

    def __init__(self, plotly_name, parent_name, **kwargs):
        super(ColorlistValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )

    def description(self):
        return """\
    The '{plotly_name}' property is a colorlist that may be specified
    as a tuple, list, one-dimensional numpy array, or pandas Series of valid
    color strings""".format(
            plotly_name=self.plotly_name
        )

    def validate_coerce(self, v):

        if v is None:
            # Pass None through
            pass
        elif is_array(v):
            validated_v = [
                ColorValidator.perform_validate_coerce(e, allow_number=False) for e in v
            ]

            invalid_els = [
                el for el, validated_el in zip(v, validated_v) if validated_el is None
            ]
            if invalid_els:
                self.raise_invalid_elements(invalid_els)

            v = to_scalar_or_list(v)
        else:
            self.raise_invalid_val(v)
        return v


class ColorscaleValidator(BaseValidator):
    """
    "colorscale": {
        "description": "A Plotly colorscale either picked by a name:
                        (any of Greys, YlGnBu, Greens, YlOrRd, Bluered,
                        RdBu, Reds, Blues, Picnic, Rainbow, Portland,
                        Jet, Hot, Blackbody, Earth, Electric, Viridis)
                        customized as an {array} of 2-element {arrays}
                        where the first element is the normalized color
                        level value (starting at *0* and ending at *1*),
                        and the second item is a valid color string.",
        "requiredOpts": [],
        "otherOpts": [
            "dflt"
        ]
    },
    """

    def __init__(self, plotly_name, parent_name, **kwargs):
        super(ColorscaleValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )

        # named colorscales initialized on first use
        self._named_colorscales = None

    @property
    def named_colorscales(self):
        if self._named_colorscales is None:
            import inspect
            import itertools
            from plotly import colors

            colorscale_members = itertools.chain(
                inspect.getmembers(colors.sequential),
                inspect.getmembers(colors.diverging),
                inspect.getmembers(colors.cyclical),
            )

            self._named_colorscales = {
                c[0].lower(): c[1]
                for c in colorscale_members
                if isinstance(c, tuple)
                and len(c) == 2
                and isinstance(c[0], str)
                and isinstance(c[1], list)
                and not c[0].endswith("_r")
                and not c[0].startswith("_")
            }

        return self._named_colorscales

    def description(self):
        colorscales_str = "\n".join(
            textwrap.wrap(
                repr(sorted(list(self.named_colorscales))),
                initial_indent=" " * 12,
                subsequent_indent=" " * 13,
                break_on_hyphens=False,
                width=80,
            )
        )

        desc = """\
    The '{plotly_name}' property is a colorscale and may be
    specified as:
      - A list of colors that will be spaced evenly to create the colorscale.
        Many predefined colorscale lists are included in the sequential, diverging,
        and cyclical modules in the plotly.colors package.
      - A list of 2-element lists where the first element is the
        normalized color level value (starting at 0 and ending at 1),
        and the second item is a valid color string.
        (e.g. [[0, 'green'], [0.5, 'red'], [1.0, 'rgb(0, 0, 255)']])
      - One of the following named colorscales:
{colorscales_str}.
        Appending '_r' to a named colorscale reverses it.
""".format(
            plotly_name=self.plotly_name, colorscales_str=colorscales_str
        )

        return desc

    def validate_coerce(self, v):
        v_valid = False

        if v is None:
            v_valid = True
        elif isinstance(v, str):
            v_lower = v.lower()
            if v_lower in self.named_colorscales:
                # Convert to color list
                v = self.named_colorscales[v_lower]
                v_valid = True
            elif v_lower.endswith("_r") and v_lower[:-2] in self.named_colorscales:
                v = self.named_colorscales[v_lower[:-2]][::-1]
                v_valid = True
            #
            if v_valid:
                # Convert to list of lists colorscale
                d = len(v) - 1
                v = [[(1.0 * i) / (1.0 * d), x] for i, x in enumerate(v)]

        elif is_array(v) and len(v) > 0:
            # If firset element is a string, treat as colorsequence
            if isinstance(v[0], str):
                invalid_els = [
                    e for e in v if ColorValidator.perform_validate_coerce(e) is None
                ]

                if len(invalid_els) == 0:
                    v_valid = True

                    # Convert to list of lists colorscale
                    d = len(v) - 1
                    v = [[(1.0 * i) / (1.0 * d), x] for i, x in enumerate(v)]
            else:
                invalid_els = [
                    e
                    for e in v
                    if (
                        not is_array(e)
                        or len(e) != 2
                        or not isinstance(e[0], numbers.Number)
                        or not (0 <= e[0] <= 1)
                        or not isinstance(e[1], str)
                        or ColorValidator.perform_validate_coerce(e[1]) is None
                    )
                ]

                if len(invalid_els) == 0:
                    v_valid = True

                    # Convert to list of lists
                    v = [
                        [e[0], ColorValidator.perform_validate_coerce(e[1])] for e in v
                    ]

        if not v_valid:
            self.raise_invalid_val(v)

        return v

    def present(self, v):
        # Return-type must be immutable
        if v is None:
            return None
        elif isinstance(v, str):
            return v
        else:
            return tuple([tuple(e) for e in v])


class AngleValidator(BaseValidator):
    """
    "angle": {
        "description": "A number (in degree) between -180 and 180.",
        "requiredOpts": [],
        "otherOpts": [
            "dflt",
            "arrayOk"
        ]
    },
    """

    def __init__(self, plotly_name, parent_name, array_ok=False, **kwargs):
        super(AngleValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )
        self.array_ok = array_ok

    def description(self):
        desc = """\
    The '{plotly_name}' property is a angle (in degrees) that may be
    specified as a number between -180 and 180{array_ok}.
    Numeric values outside this range are converted to the equivalent value
    (e.g. 270 is converted to -90).
        """.format(
            plotly_name=self.plotly_name,
            array_ok=", or a list, numpy array or other iterable thereof"
            if self.array_ok
            else "",
        )

        return desc

    def validate_coerce(self, v):
        if v is None:
            # Pass None through
            pass
        elif self.array_ok and is_homogeneous_array(v):
            try:
                v_array = copy_to_readonly_numpy_array(v, force_numeric=True)
            except (ValueError, TypeError, OverflowError):
                self.raise_invalid_val(v)
            v = v_array  # Always numeric numpy array
            # Normalize v onto the interval [-180, 180)
            v = (v + 180) % 360 - 180
        elif self.array_ok and is_simple_array(v):
            # Check numeric
            invalid_els = [e for e in v if not isinstance(e, numbers.Number)]

            if invalid_els:
                self.raise_invalid_elements(invalid_els[:10])

            v = [(x + 180) % 360 - 180 for x in to_scalar_or_list(v)]
        elif not isinstance(v, numbers.Number):
            self.raise_invalid_val(v)
        else:
            # Normalize v onto the interval [-180, 180)
            v = (v + 180) % 360 - 180

        return v


class SubplotidValidator(BaseValidator):
    """
    "subplotid": {
        "description": "An id string of a subplot type (given by dflt),
                        optionally followed by an integer >1. e.g. if
                        dflt='geo', we can have 'geo', 'geo2', 'geo3',
                        ...",
        "requiredOpts": [
            "dflt"
        ],
        "otherOpts": [
            "regex"
        ]
    }
    """

    def __init__(self, plotly_name, parent_name, dflt=None, regex=None, **kwargs):

        if dflt is None and regex is None:
            raise ValueError("One or both of regex and deflt must be specified")

        super(SubplotidValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )

        if dflt is not None:
            self.base = dflt
        else:
            # e.g. regex == '/^y([2-9]|[1-9][0-9]+)?$/'
            self.base = re.match(r"/\^(\w+)", regex).group(1)

        self.regex = self.base + r"(\d*)"

    def description(self):

        desc = """\
    The '{plotly_name}' property is an identifier of a particular
    subplot, of type '{base}', that may be specified as the string '{base}'
    optionally followed by an integer >= 1
    (e.g. '{base}', '{base}1', '{base}2', '{base}3', etc.)
        """.format(
            plotly_name=self.plotly_name, base=self.base
        )
        return desc

    def validate_coerce(self, v):
        if v is None:
            pass
        elif not isinstance(v, str):
            self.raise_invalid_val(v)
        else:
            # match = re.fullmatch(self.regex, v)
            match = fullmatch(self.regex, v)
            if not match:
                is_valid = False
            else:
                digit_str = match.group(1)
                if len(digit_str) > 0 and int(digit_str) == 0:
                    is_valid = False
                elif len(digit_str) > 0 and int(digit_str) == 1:
                    # Remove 1 suffix (e.g. x1 -> x)
                    v = self.base
                    is_valid = True
                else:
                    is_valid = True

            if not is_valid:
                self.raise_invalid_val(v)
        return v


class FlaglistValidator(BaseValidator):
    """
    "flaglist": {
        "description": "A string representing a combination of flags
                        (order does not matter here). Combine any of the
                        available `flags` with *+*.
                        (e.g. ('lines+markers')). Values in `extras`
                        cannot be combined.",
        "requiredOpts": [
            "flags"
        ],
        "otherOpts": [
            "dflt",
            "extras",
            "arrayOk"
        ]
    },
    """

    def __init__(
        self, plotly_name, parent_name, flags, extras=None, array_ok=False, **kwargs
    ):
        super(FlaglistValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )
        self.flags = flags
        self.extras = extras if extras is not None else []
        self.array_ok = array_ok

    def description(self):

        desc = (
            """\
    The '{plotly_name}' property is a flaglist and may be specified
    as a string containing:"""
        ).format(plotly_name=self.plotly_name)

        # Flags
        desc = (
            desc
            + (
                """
      - Any combination of {flags} joined with '+' characters
        (e.g. '{eg_flag}')"""
            ).format(flags=self.flags, eg_flag="+".join(self.flags[:2]))
        )

        # Extras
        if self.extras:
            desc = (
                desc
                + (
                    """
        OR exactly one of {extras} (e.g. '{eg_extra}')"""
                ).format(extras=self.extras, eg_extra=self.extras[-1])
            )

        if self.array_ok:
            desc = (
                desc
                + """
      - A list or array of the above"""
            )

        return desc

    def vc_scalar(self, v):
        if isinstance(v, str):
            v = v.strip()

        if v in self.extras:
            return v

        if not isinstance(v, str):
            return None

        # To be generous we accept flags separated on plus ('+'),
        # or comma (',') and we accept whitespace around the flags
        split_vals = [e.strip() for e in re.split("[,+]", v)]

        # Are all flags valid names?
        if all(f in self.flags for f in split_vals):
            return "+".join(split_vals)
        else:
            return None

    def validate_coerce(self, v):
        if v is None:
            # Pass None through
            pass
        elif self.array_ok and is_array(v):

            # Coerce individual strings
            validated_v = [self.vc_scalar(e) for e in v]

            invalid_els = [
                el for el, validated_el in zip(v, validated_v) if validated_el is None
            ]
            if invalid_els:
                self.raise_invalid_elements(invalid_els)

            if is_homogeneous_array(v):
                v = copy_to_readonly_numpy_array(validated_v, kind="U")
            else:
                v = to_scalar_or_list(v)
        else:

            validated_v = self.vc_scalar(v)
            if validated_v is None:
                self.raise_invalid_val(v)

            v = validated_v

        return v


class AnyValidator(BaseValidator):
    """
    "any": {
        "description": "Any type.",
        "requiredOpts": [],
        "otherOpts": [
            "dflt",
            "values",
            "arrayOk"
        ]
    },
    """

    def __init__(self, plotly_name, parent_name, values=None, array_ok=False, **kwargs):
        super(AnyValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )
        self.values = values
        self.array_ok = array_ok

    def description(self):

        desc = """\
    The '{plotly_name}' property accepts values of any type
        """.format(
            plotly_name=self.plotly_name
        )
        return desc

    def validate_coerce(self, v):
        if v is None:
            # Pass None through
            pass
        elif self.array_ok and is_homogeneous_array(v):
            v = copy_to_readonly_numpy_array(v, kind="O")
        elif self.array_ok and is_simple_array(v):
            v = to_scalar_or_list(v)
        return v


class InfoArrayValidator(BaseValidator):
    """
    "info_array": {
        "description": "An {array} of plot information.",
        "requiredOpts": [
            "items"
        ],
        "otherOpts": [
            "dflt",
            "freeLength",
            "dimensions"
        ]
    }
    """

    def __init__(
        self,
        plotly_name,
        parent_name,
        items,
        free_length=None,
        dimensions=None,
        **kwargs,
    ):
        super(InfoArrayValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )

        self.items = items
        self.dimensions = dimensions if dimensions else 1
        self.free_length = free_length

        # Instantiate validators for each info array element
        self.item_validators = []
        info_array_items = self.items if isinstance(self.items, list) else [self.items]

        for i, item in enumerate(info_array_items):
            element_name = "{name}[{i}]".format(name=plotly_name, i=i)
            item_validator = InfoArrayValidator.build_validator(
                item, element_name, parent_name
            )
            self.item_validators.append(item_validator)

    def description(self):

        # Cases
        #  1) self.items is array, self.dimensions is 1
        #       a) free_length=True
        #       b) free_length=False
        #  2) self.items is array, self.dimensions is 2
        #     (requires free_length=True)
        #  3) self.items is scalar (requires free_length=True)
        #       a) dimensions=1
        #       b) dimensions=2
        #
        # dimensions can be set to '1-2' to indicate the both are accepted
        #
        desc = """\
    The '{plotly_name}' property is an info array that may be specified as:\
""".format(
            plotly_name=self.plotly_name
        )

        if isinstance(self.items, list):
            # ### Case 1 ###
            if self.dimensions in (1, "1-2"):
                upto = " up to" if self.free_length and self.dimensions == 1 else ""
                desc += """

    * a list or tuple of{upto} {N} elements where:\
""".format(
                    upto=upto, N=len(self.item_validators)
                )

                for i, item_validator in enumerate(self.item_validators):
                    el_desc = item_validator.description().strip()
                    desc = (
                        desc
                        + """
({i}) {el_desc}""".format(
                            i=i, el_desc=el_desc
                        )
                    )

            # ### Case 2 ###
            if self.dimensions in ("1-2", 2):
                assert self.free_length

                desc += """

    * a 2D list where:"""
                for i, item_validator in enumerate(self.item_validators):
                    # Update name for 2d
                    orig_name = item_validator.plotly_name
                    item_validator.plotly_name = "{name}[i][{i}]".format(
                        name=self.plotly_name, i=i
                    )

                    el_desc = item_validator.description().strip()
                    desc = (
                        desc
                        + """
({i}) {el_desc}""".format(
                            i=i, el_desc=el_desc
                        )
                    )
                    item_validator.plotly_name = orig_name
        else:
            # ### Case 3 ###
            assert self.free_length
            item_validator = self.item_validators[0]
            orig_name = item_validator.plotly_name

            if self.dimensions in (1, "1-2"):
                item_validator.plotly_name = "{name}[i]".format(name=self.plotly_name)

                el_desc = item_validator.description().strip()

                desc += """
    * a list of elements where:
      {el_desc}
""".format(
                    el_desc=el_desc
                )

            if self.dimensions in ("1-2", 2):
                item_validator.plotly_name = "{name}[i][j]".format(
                    name=self.plotly_name
                )

                el_desc = item_validator.description().strip()
                desc += """
    * a 2D list where:
      {el_desc}
""".format(
                    el_desc=el_desc
                )

            item_validator.plotly_name = orig_name

        return desc

    @staticmethod
    def build_validator(validator_info, plotly_name, parent_name):
        datatype = validator_info["valType"]  # type: str
        validator_classname = datatype.title().replace("_", "") + "Validator"
        validator_class = eval(validator_classname)

        kwargs = {
            k: validator_info[k]
            for k in validator_info
            if k not in ["valType", "description", "role"]
        }

        return validator_class(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )

    def validate_element_with_indexed_name(self, val, validator, inds):
        """
        Helper to add indexes to a validator's name, call validate_coerce on
        a value, then restore the original validator name.

        This makes sure that if a validation error message is raised, the
        property name the user sees includes the index(es) of the offending
        element.

        Parameters
        ----------
        val:
            A value to be validated
        validator
            A validator
        inds
            List of one or more non-negative integers that represent the
            nested index of the value being validated
        Returns
        -------
        val
            validated value

        Raises
        ------
        ValueError
            if val fails validation
        """
        orig_name = validator.plotly_name
        new_name = self.plotly_name
        for i in inds:
            new_name += "[" + str(i) + "]"
        validator.plotly_name = new_name
        try:
            val = validator.validate_coerce(val)
        finally:
            validator.plotly_name = orig_name

        return val

    def validate_coerce(self, v):
        if v is None:
            # Pass None through
            return None
        elif not is_array(v):
            self.raise_invalid_val(v)

        # Save off original v value to use in error reporting
        orig_v = v

        # Convert everything into nested lists
        # This way we don't need to worry about nested numpy arrays
        v = to_scalar_or_list(v)

        is_v_2d = v and is_array(v[0])

        if is_v_2d and self.dimensions in ("1-2", 2):
            if is_array(self.items):
                # e.g. 2D list as parcoords.dimensions.constraintrange
                # check that all items are there for each nested element
                for i, row in enumerate(v):
                    # Check row length
                    if not is_array(row) or len(row) != len(self.items):
                        self.raise_invalid_val(orig_v[i], [i])

                    for j, validator in enumerate(self.item_validators):
                        row[j] = self.validate_element_with_indexed_name(
                            v[i][j], validator, [i, j]
                        )
            else:
                # e.g. 2D list as layout.grid.subplots
                # check that all elements match individual validator
                validator = self.item_validators[0]
                for i, row in enumerate(v):
                    if not is_array(row):
                        self.raise_invalid_val(orig_v[i], [i])

                    for j, el in enumerate(row):
                        row[j] = self.validate_element_with_indexed_name(
                            el, validator, [i, j]
                        )
        elif v and self.dimensions == 2:
            # e.g. 1D list passed as layout.grid.subplots
            self.raise_invalid_val(orig_v[0], [0])
        elif not is_array(self.items):
            # e.g. 1D list passed as layout.grid.xaxes
            validator = self.item_validators[0]
            for i, el in enumerate(v):
                v[i] = self.validate_element_with_indexed_name(el, validator, [i])

        elif not self.free_length and len(v) != len(self.item_validators):
            # e.g. 3 element list as layout.xaxis.range
            self.raise_invalid_val(orig_v)
        elif self.free_length and len(v) > len(self.item_validators):
            # e.g. 4 element list as layout.updatemenu.button.args
            self.raise_invalid_val(orig_v)
        else:
            # We have a 1D array of the correct length
            for i, (el, validator) in enumerate(zip(v, self.item_validators)):
                # Validate coerce elements
                v[i] = validator.validate_coerce(el)

        return v

    def present(self, v):
        if v is None:
            return None
        else:
            if (
                self.dimensions == 2
                or self.dimensions == "1-2"
                and v
                and is_array(v[0])
            ):

                # 2D case
                v = copy.deepcopy(v)
                for row in v:
                    for i, (el, validator) in enumerate(zip(row, self.item_validators)):
                        row[i] = validator.present(el)

                return tuple(tuple(row) for row in v)
            else:
                # 1D case
                v = copy.copy(v)
                # Call present on each of the item validators
                for i, (el, validator) in enumerate(zip(v, self.item_validators)):
                    # Validate coerce elements
                    v[i] = validator.present(el)

                # Return tuple form of
                return tuple(v)


class LiteralValidator(BaseValidator):
    """
    Validator for readonly literal values
    """

    def __init__(self, plotly_name, parent_name, val, **kwargs):
        super(LiteralValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )
        self.val = val

    def validate_coerce(self, v):
        if v != self.val:
            raise ValueError(
                """\
    The '{plotly_name}' property of {parent_name} is read-only""".format(
                    plotly_name=self.plotly_name, parent_name=self.parent_name
                )
            )
        else:
            return v


class DashValidator(EnumeratedValidator):
    """
    Special case validator for handling dash properties that may be specified
    as lists of dash lengths.  These are not currently specified in the
    schema.

    "dash": {
        "valType": "string",
        "values": [
            "solid",
            "dot",
            "dash",
            "longdash",
            "dashdot",
            "longdashdot"
        ],
        "dflt": "solid",
        "role": "style",
        "editType": "style",
        "description": "Sets the dash style of lines. Set to a dash type
        string (*solid*, *dot*, *dash*, *longdash*, *dashdot*, or
        *longdashdot*) or a dash length list in px (eg *5px,10px,2px,2px*)."
    },
    """

    def __init__(self, plotly_name, parent_name, values, **kwargs):

        # Add regex to handle dash length lists
        dash_list_regex = r"/^\d+(\.\d+)?(px|%)?((,|\s)\s*\d+(\.\d+)?(px|%)?)*$/"

        values = values + [dash_list_regex]

        # Call EnumeratedValidator superclass
        super(DashValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, values=values, **kwargs
        )

    def description(self):

        # Separate regular values from regular expressions
        enum_vals = []
        enum_regexs = []
        for v, regex in zip(self.values, self.val_regexs):
            if regex is not None:
                enum_regexs.append(regex.pattern)
            else:
                enum_vals.append(v)
        desc = """\
    The '{name}' property is an enumeration that may be specified as:""".format(
            name=self.plotly_name
        )

        if enum_vals:
            enum_vals_str = "\n".join(
                textwrap.wrap(
                    repr(enum_vals),
                    initial_indent=" " * 12,
                    subsequent_indent=" " * 12,
                    break_on_hyphens=False,
                    width=80,
                )
            )

            desc = (
                desc
                + """
      - One of the following dash styles:
{enum_vals_str}""".format(
                    enum_vals_str=enum_vals_str
                )
            )

        desc = (
            desc
            + """
      - A string containing a dash length list in pixels or percentages
            (e.g. '5px 10px 2px 2px', '5, 10, 2, 2', '10% 20% 40%', etc.)
"""
        )
        return desc


class ImageUriValidator(BaseValidator):
    _PIL = None

    try:
        _PIL = import_module("PIL")
    except ImportError:
        pass

    def __init__(self, plotly_name, parent_name, **kwargs):
        super(ImageUriValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )

    def description(self):

        desc = """\
    The '{plotly_name}' property is an image URI that may be specified as:
      - A remote image URI string
        (e.g. 'http://www.somewhere.com/image.png')
      - A data URI image string
        (e.g. '')
      - A PIL.Image.Image object which will be immediately converted
        to a data URI image string
        See http://pillow.readthedocs.io/en/latest/reference/Image.html
        """.format(
            plotly_name=self.plotly_name
        )
        return desc

    def validate_coerce(self, v):
        if v is None:
            pass
        elif isinstance(v, str):
            # Future possibilities:
            #   - Detect filesystem system paths and convert to URI
            #   - Validate either url or data uri
            pass
        elif self._PIL and isinstance(v, self._PIL.Image.Image):
            # Convert PIL image to png data uri string
            v = self.pil_image_to_uri(v)
        else:
            self.raise_invalid_val(v)

        return v

    @staticmethod
    def pil_image_to_uri(v):
        in_mem_file = io.BytesIO()
        v.save(in_mem_file, format="PNG")
        in_mem_file.seek(0)
        img_bytes = in_mem_file.read()
        base64_encoded_result_bytes = base64.b64encode(img_bytes)
        base64_encoded_result_str = base64_encoded_result_bytes.decode("ascii")
        v = "data:image/png;base64,{base64_encoded_result_str}".format(
            base64_encoded_result_str=base64_encoded_result_str
        )
        return v


class CompoundValidator(BaseValidator):
    def __init__(self, plotly_name, parent_name, data_class_str, data_docs, **kwargs):
        super(CompoundValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )

        # Save element class string
        self.data_class_str = data_class_str
        self._data_class = None
        self.data_docs = data_docs
        self.module_str = CompoundValidator.compute_graph_obj_module_str(
            self.data_class_str, parent_name
        )

    @staticmethod
    def compute_graph_obj_module_str(data_class_str, parent_name):
        if parent_name == "frame" and data_class_str in ["Data", "Layout"]:
            # Special case. There are no graph_objs.frame.Data or
            # graph_objs.frame.Layout classes. These are remapped to
            # graph_objs.Data and graph_objs.Layout

            parent_parts = parent_name.split(".")
            module_str = ".".join(["plotly.graph_objs"] + parent_parts[1:])
        elif parent_name == "layout.template" and data_class_str == "Layout":
            # Remap template's layout to regular layout
            module_str = "plotly.graph_objs"
        elif "layout.template.data" in parent_name:
            # Remap template's traces to regular traces
            parent_name = parent_name.replace("layout.template.data.", "")
            if parent_name:
                module_str = "plotly.graph_objs." + parent_name
            else:
                module_str = "plotly.graph_objs"
        elif parent_name:
            module_str = "plotly.graph_objs." + parent_name
        else:
            module_str = "plotly.graph_objs"

        return module_str

    @property
    def data_class(self):
        if self._data_class is None:
            module = import_module(self.module_str)
            self._data_class = getattr(module, self.data_class_str)

        return self._data_class

    def description(self):

        desc = (
            """\
    The '{plotly_name}' property is an instance of {class_str}
    that may be specified as:
      - An instance of :class:`{module_str}.{class_str}`
      - A dict of string/value properties that will be passed
        to the {class_str} constructor

        Supported dict properties:
            {constructor_params_str}"""
        ).format(
            plotly_name=self.plotly_name,
            class_str=self.data_class_str,
            module_str=self.module_str,
            constructor_params_str=self.data_docs,
        )

        return desc

    def validate_coerce(self, v, skip_invalid=False, _validate=True):
        if v is None:
            v = self.data_class()

        elif isinstance(v, dict):
            v = self.data_class(v, skip_invalid=skip_invalid, _validate=_validate)

        elif isinstance(v, self.data_class):
            # Copy object
            v = self.data_class(v)
        else:
            if skip_invalid:
                v = self.data_class()
            else:
                self.raise_invalid_val(v)

        v._plotly_name = self.plotly_name
        return v

    def present(self, v):
        # Return compound object as-is
        return v


class TitleValidator(CompoundValidator):
    """
    This is a special validator to allow compound title properties
    (e.g. layout.title, layout.xaxis.title, etc.) to be set as strings
    or numbers.  These strings are mapped to the 'text' property of the
    compound validator.
    """

    def __init__(self, *args, **kwargs):
        super(TitleValidator, self).__init__(*args, **kwargs)

    def validate_coerce(self, v, skip_invalid=False):
        if isinstance(v, (str, int, float)):
            v = {"text": v}
        return super(TitleValidator, self).validate_coerce(v, skip_invalid=skip_invalid)


class CompoundArrayValidator(BaseValidator):
    def __init__(self, plotly_name, parent_name, data_class_str, data_docs, **kwargs):
        super(CompoundArrayValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )

        # Save element class string
        self.data_class_str = data_class_str
        self._data_class = None

        self.data_docs = data_docs
        self.module_str = CompoundValidator.compute_graph_obj_module_str(
            self.data_class_str, parent_name
        )

    def description(self):

        desc = (
            """\
    The '{plotly_name}' property is a tuple of instances of
    {class_str} that may be specified as:
      - A list or tuple of instances of {module_str}.{class_str}
      - A list or tuple of dicts of string/value properties that
        will be passed to the {class_str} constructor

        Supported dict properties:
            {constructor_params_str}"""
        ).format(
            plotly_name=self.plotly_name,
            class_str=self.data_class_str,
            module_str=self.module_str,
            constructor_params_str=self.data_docs,
        )

        return desc

    @property
    def data_class(self):
        if self._data_class is None:
            module = import_module(self.module_str)
            self._data_class = getattr(module, self.data_class_str)

        return self._data_class

    def validate_coerce(self, v, skip_invalid=False):

        if v is None:
            v = []

        elif isinstance(v, (list, tuple)):
            res = []
            invalid_els = []
            for v_el in v:
                if isinstance(v_el, self.data_class):
                    res.append(self.data_class(v_el))
                elif isinstance(v_el, dict):
                    res.append(self.data_class(v_el, skip_invalid=skip_invalid))
                else:
                    if skip_invalid:
                        res.append(self.data_class())
                    else:
                        res.append(None)
                        invalid_els.append(v_el)

            if invalid_els:
                self.raise_invalid_elements(invalid_els)

            v = to_scalar_or_list(res)
        else:
            if skip_invalid:
                v = []
            else:
                self.raise_invalid_val(v)

        return v

    def present(self, v):
        # Return compound object as tuple
        return tuple(v)


class BaseDataValidator(BaseValidator):
    def __init__(
        self, class_strs_map, plotly_name, parent_name, set_uid=False, **kwargs
    ):
        super(BaseDataValidator, self).__init__(
            plotly_name=plotly_name, parent_name=parent_name, **kwargs
        )

        self.class_strs_map = class_strs_map
        self._class_map = {}
        self.set_uid = set_uid

    def description(self):

        trace_types = str(list(self.class_strs_map.keys()))

        trace_types_wrapped = "\n".join(
            textwrap.wrap(
                trace_types,
                initial_indent="            One of: ",
                subsequent_indent=" " * 21,
                width=79 - 12,
            )
        )

        desc = (
            """\
    The '{plotly_name}' property is a tuple of trace instances
    that may be specified as:
      - A list or tuple of trace instances
        (e.g. [Scatter(...), Bar(...)])
      - A single trace instance
        (e.g. Scatter(...), Bar(...), etc.)
      - A list or tuple of dicts of string/value properties where:
        - The 'type' property specifies the trace type
{trace_types}

        - All remaining properties are passed to the constructor of
          the specified trace type

        (e.g. [{{'type': 'scatter', ...}}, {{'type': 'bar, ...}}])"""
        ).format(plotly_name=self.plotly_name, trace_types=trace_types_wrapped)

        return desc

    def get_trace_class(self, trace_name):
        # Import trace classes
        if trace_name not in self._class_map:
            trace_module = import_module("plotly.graph_objs")
            trace_class_name = self.class_strs_map[trace_name]
            self._class_map[trace_name] = getattr(trace_module, trace_class_name)

        return self._class_map[trace_name]

    def validate_coerce(self, v, skip_invalid=False, _validate=True):
        from plotly.basedatatypes import BaseTraceType

        # Import Histogram2dcontour, this is the deprecated name of the
        # Histogram2dContour trace.
        from plotly.graph_objs import Histogram2dcontour

        if v is None:
            v = []
        else:
            if not isinstance(v, (list, tuple)):
                v = [v]

            res = []
            invalid_els = []
            for v_el in v:

                if isinstance(v_el, BaseTraceType):
                    if isinstance(v_el, Histogram2dcontour):
                        v_el = dict(type="histogram2dcontour", **v_el._props)
                    else:
                        v_el = v_el._props

                if isinstance(v_el, dict):
                    type_in_v_el = "type" in v_el
                    trace_type = v_el.pop("type", "scatter")

                    if trace_type not in self.class_strs_map:
                        if skip_invalid:
                            # Treat as scatter trace
                            trace = self.get_trace_class("scatter")(
                                skip_invalid=skip_invalid, _validate=_validate, **v_el
                            )
                            res.append(trace)
                        else:
                            res.append(None)
                            invalid_els.append(v_el)
                    else:
                        trace = self.get_trace_class(trace_type)(
                            skip_invalid=skip_invalid, _validate=_validate, **v_el
                        )
                        res.append(trace)

                    if type_in_v_el:
                        # Restore type in v_el
                        v_el["type"] = trace_type
                else:
                    if skip_invalid:
                        # Add empty scatter trace
                        trace = self.get_trace_class("scatter")()
                        res.append(trace)
                    else:
                        res.append(None)
                        invalid_els.append(v_el)

            if invalid_els:
                self.raise_invalid_elements(invalid_els)

            v = to_scalar_or_list(res)

            # Set new UIDs
            if self.set_uid:
                for trace in v:
                    trace.uid = str(uuid.uuid4())

        return v


class BaseTemplateValidator(CompoundValidator):
    def __init__(self, plotly_name, parent_name, data_class_str, data_docs, **kwargs):

        super(BaseTemplateValidator, self).__init__(
            plotly_name=plotly_name,
            parent_name=parent_name,
            data_class_str=data_class_str,
            data_docs=data_docs,
            **kwargs,
        )

    def description(self):
        compound_description = super(BaseTemplateValidator, self).description()
        compound_description += """
      - The name of a registered template where current registered templates
        are stored in the plotly.io.templates configuration object. The names
        of all registered templates can be retrieved with:
            >>> import plotly.io as pio
            >>> list(pio.templates)  # doctest: +ELLIPSIS
            ['ggplot2', 'seaborn', 'simple_white', 'plotly', 'plotly_white', ...]

      - A string containing multiple registered template names, joined on '+'
        characters (e.g. 'template1+template2'). In this case the resulting
        template is computed by merging together the collection of registered
        templates"""

        return compound_description

    def validate_coerce(self, v, skip_invalid=False):
        import plotly.io as pio

        try:
            # Check if v is a template identifier
            # (could be any hashable object)
            if v in pio.templates:
                return copy.deepcopy(pio.templates[v])
            # Otherwise, if v is a string, check to see if it consists of
            # multiple template names joined on '+' characters
            elif isinstance(v, str):
                template_names = v.split("+")
                if all([name in pio.templates for name in template_names]):
                    return pio.templates.merge_templates(*template_names)

        except TypeError:
            # v is un-hashable
            pass

        # Check for empty template
        if v == {} or isinstance(v, self.data_class) and v.to_plotly_json() == {}:
            # Replace empty template with {'data': {'scatter': [{}]}} so that we can
            # tell the difference between an un-initialized template and a template
            # explicitly set to empty.
            return self.data_class(data_scatter=[{}])

        return super(BaseTemplateValidator, self).validate_coerce(
            v, skip_invalid=skip_invalid
        )