Spaces:
Running
Running
File size: 24,268 Bytes
b7ce511 44cf989 b7ce511 5676c75 44cf989 b7ce511 91a8b2f 5676c75 fe43b7a b7ce511 fe43b7a 91a8b2f 5676c75 b7ce511 5676c75 2881d33 5676c75 fe43b7a 91a8b2f 5676c75 fe43b7a b7ce511 91a8b2f 5676c75 b7ce511 5676c75 b7ce511 91a8b2f 5676c75 91a8b2f fe43b7a 91a8b2f 5676c75 b7ce511 5676c75 b7ce511 5676c75 e4d0f40 5676c75 b7ce511 e4d0f40 5676c75 b7ce511 5676c75 e4d0f40 b7ce511 e4d0f40 b7ce511 e4d0f40 b7ce511 44cf989 b7ce511 5676c75 b7ce511 5676c75 b7ce511 5676c75 b7ce511 5676c75 b7ce511 e4d0f40 b7ce511 2881d33 b7ce511 e4d0f40 b7ce511 f947a52 b7ce511 5676c75 e4d0f40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
# βββ monkey-patch gradio_client so bool schemas donβt crash json_schema_to_python_type βββ
import gradio_client.utils as _gc_utils
# back up originals
_orig_get_type = _gc_utils.get_type
_orig_json2py = _gc_utils._json_schema_to_python_type
def _patched_get_type(schema):
# treat any boolean schema as if it were an empty dict
if isinstance(schema, bool):
schema = {}
return _orig_get_type(schema)
def _patched_json_schema_to_python_type(schema, defs=None):
# treat any boolean schema as if it were an empty dict
if isinstance(schema, bool):
schema = {}
return _orig_json2py(schema, defs)
_gc_utils.get_type = _patched_get_type
_gc_utils._json_schema_to_python_type = _patched_json_schema_to_python_type
# βββ now itβs safe to import Gradio and build your interface βββββββββββββββββββββββββββ
import gradio as gr
import os
import sys
import argparse
import tempfile
import shutil
import base64
import io
import torch
import selfies
from rdkit import Chem
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from matplotlib import cm
from typing import Optional
from transformers import EsmForMaskedLM, EsmTokenizer, AutoModel
from torch.utils.data import DataLoader
from Bio.PDB import PDBParser, MMCIFParser
from Bio.Data import IUPACData
from utils.drug_tokenizer import DrugTokenizer
from utils.metric_learning_models_att_maps import Pre_encoded, FusionDTI
from utils.foldseek_util import get_struc_seq
# βββββ Helpers βββββββββββββββββββββββββββββββββββββββββββββββββ
three2one = {k.upper(): v for k, v in IUPACData.protein_letters_3to1.items()}
three2one.update({"MSE": "M", "SEC": "C", "PYL": "K"})
def simple_seq_from_structure(path: str) -> str:
parser = MMCIFParser(QUIET=True) if path.endswith(".cif") else PDBParser(QUIET=True)
structure = parser.get_structure("P", path)
chains = list(structure.get_chains())
if not chains:
return ""
chain = max(chains, key=lambda c: len(list(c.get_residues())))
return "".join(three2one.get(res.get_resname().upper(), "X") for res in chain)
def smiles_to_selfies(smiles: str) -> Optional[str]:
try:
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return None
return selfies.encoder(smiles)
except:
return None
def parse_config():
p = argparse.ArgumentParser()
p.add_argument("--prot_encoder_path", default="westlake-repl/SaProt_650M_AF2")
p.add_argument("--drug_encoder_path", default="HUBioDataLab/SELFormer")
p.add_argument("--agg_mode", type=str, default="mean_all_tok")
p.add_argument("--group_size", type=int, default=1)
p.add_argument("--fusion", default="CAN")
p.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu")
p.add_argument("--save_path_prefix", default="save_model_ckp/")
p.add_argument("--dataset", default="Human")
return p.parse_args()
args = parse_config()
DEVICE = args.device
# βββββ Load models & tokenizers βββββββββββββββββββββββββββββββββ
prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path)
prot_model = EsmForMaskedLM.from_pretrained(args.prot_encoder_path)
drug_tokenizer = DrugTokenizer()
drug_model = AutoModel.from_pretrained(args.drug_encoder_path)
encoding = Pre_encoded(prot_model, drug_model, args).to(DEVICE)
def collate_fn(batch):
query1, query2, scores = zip(*batch)
query_encodings1 = prot_tokenizer.batch_encode_plus(
list(query1),
max_length=512,
padding="max_length",
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
query_encodings2 = drug_tokenizer.batch_encode_plus(
list(query2),
max_length=512,
padding="max_length",
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
scores = torch.tensor(list(scores))
attention_mask1 = query_encodings1["attention_mask"].bool()
attention_mask2 = query_encodings2["attention_mask"].bool()
return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores
def get_case_feature(model, loader):
model.eval()
with torch.no_grad():
for p_ids, p_mask, d_ids, d_mask, _ in loader:
p_ids, p_mask = p_ids.to(DEVICE), p_mask.to(DEVICE)
d_ids, d_mask = d_ids.to(DEVICE), d_mask.to(DEVICE)
p_emb, d_emb = model.encoding(p_ids, p_mask, d_ids, d_mask)
return [(p_emb.cpu(), d_emb.cpu(),
p_ids.cpu(), d_ids.cpu(),
p_mask.cpu(), d_mask.cpu(), None)]
# βββββββββββββββ visualisation βββββββββββββββββββββββββββββββββββββββββββ
def visualize_attention(model, feats, drug_idx: Optional[int] = None) -> str:
"""
Render a Protein β Drug cross-attention heat-map and, optionally, a
Top-30 protein-residue table for a chosen drug-token index.
The token index shown on the x-axis (and accepted via *drug_idx*) is **the
position of that token in the *original* drug sequence**, *after* the
tokeniser but *before* any pruning or truncation (1-based in the labels,
0-based for the function argument).
Returns
-------
html : str
Base64-embedded PNG heat-map (+ optional HTML table).
"""
model.eval()
with torch.no_grad():
# ββ unpack single-case tensors βββββββββββββββββββββββββββββββββββββββββββ
p_emb, d_emb, p_ids, d_ids, p_mask, d_mask, _ = feats[0]
p_emb, d_emb = p_emb.to(DEVICE), d_emb.to(DEVICE)
p_mask, d_mask = p_mask.to(DEVICE), d_mask.to(DEVICE)
# ββ forward pass: Protein β Drug attention (B, n_p, n_d) βββββββββββββββ
_, att_pd = model(p_emb, d_emb, p_mask, d_mask)
attn = att_pd.squeeze(0).cpu() # (n_p, n_d)
# ββ decode tokens (skip special symbols) ββββββββββββββββββββββββββββββββ
def clean_ids(ids, tokenizer):
toks = tokenizer.convert_ids_to_tokens(ids.tolist())
return [t for t in toks if t not in tokenizer.all_special_tokens]
# ββ decode full sequences + record 1-based indices ββββββββββββββββββ
p_tokens_full = clean_ids(p_ids[0], prot_tokenizer)
p_indices_full = list(range(1, len(p_tokens_full) + 1))
d_tokens_full = clean_ids(d_ids[0], drug_tokenizer)
d_indices_full = list(range(1, len(d_tokens_full) + 1))
# ββ safety cut-off to match attn mat size βββββββββββββββββββββββββββββββ
p_tokens = p_tokens_full[: attn.size(0)]
p_indices_full = p_indices_full[: attn.size(0)]
d_tokens_full = d_tokens_full[: attn.size(1)]
d_indices_full = d_indices_full[: attn.size(1)]
attn = attn[: len(p_tokens_full), : len(d_tokens_full)]
orig_attn = attn.clone()
# ββ adaptive sparsity pruning βββββββββββββββββββββββββββββββββββββββββββ
thr = attn.max().item() * 0.05
row_keep = (attn.max(dim=1).values > thr)
col_keep = (attn.max(dim=0).values > thr)
if row_keep.sum() < 3:
row_keep[:] = True
if col_keep.sum() < 3:
col_keep[:] = True
attn = attn[row_keep][:, col_keep]
p_tokens = [tok for keep, tok in zip(row_keep, p_tokens) if keep]
p_indices = [idx for keep, idx in zip(row_keep, p_indices_full) if keep]
d_tokens = [tok for keep, tok in zip(col_keep, d_tokens_full) if keep]
d_indices = [idx for keep, idx in zip(col_keep, d_indices_full) if keep]
# ββ cap column count at 150 for readability βββββββββββββββββββββββββββββ
if attn.size(1) > 150:
topc = torch.topk(attn.sum(0), k=150).indices
attn = attn[:, topc]
d_tokens = [d_tokens [i] for i in topc]
d_indices = [d_indices[i] for i in topc]
# ββ draw heat-map βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
x_labels = [f"{idx}:{tok}" for idx, tok in zip(d_indices, d_tokens)]
y_labels = [f"{idx}:{tok}" for idx, tok in zip(p_indices, p_tokens)]
fig_w = min(22, max(8, len(x_labels) * 0.6)) # ~0.6β³ per column
fig_h = min(24, max(6, len(p_tokens) * 0.8))
fig, ax = plt.subplots(figsize=(fig_w, fig_h))
im = ax.imshow(attn.numpy(), aspect="auto",
cmap=cm.viridis, interpolation="nearest")
ax.set_title("Protein β Drug Attention", pad=8, fontsize=10)
ax.set_xticks(range(len(x_labels)))
ax.set_xticklabels(x_labels, rotation=90, fontsize=8,
ha="center", va="center")
ax.tick_params(axis="x", top=True, bottom=False,
labeltop=True, labelbottom=False, pad=27)
ax.set_yticks(range(len(y_labels)))
ax.set_yticklabels(y_labels, fontsize=7)
ax.tick_params(axis="y", top=True, bottom=False,
labeltop=True, labelbottom=False,
pad=10)
fig.colorbar(im, fraction=0.026, pad=0.01)
fig.tight_layout()
buf = io.BytesIO()
fig.savefig(buf, format="png", dpi=140)
plt.close(fig)
html = f'<img src="data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" />'
# βββββββββββββββββββββ Top-30 tabel βββββββββββββββββββββ
table_html = ""
if drug_idx is not None and 0 <= drug_idx < orig_attn.size(1):
# map original 0-based drug_idx β current column position
if (drug_idx + 1) in d_indices:
col_pos = d_indices.index(drug_idx + 1)
elif 0 <= drug_idx < len(d_tokens):
col_pos = drug_idx
else:
col_pos = None
if col_pos is not None:
col_vec = attn[:, col_pos]
topk = torch.topk(col_vec, k=min(30, len(col_vec))).indices.tolist()
rank_hdr = "".join(f"<th>{r+1}</th>" for r in range(len(topk)))
res_row = "".join(f"<td>{p_tokens[i]}</td>" for i in topk)
pos_row = "".join(f"<td>{p_indices[i]}</td>"for i in topk)
drug_tok_text = d_tokens_full[col_pos]
orig_idx = d_indices_full[col_pos]
# 1) build the header row: leading βRankβ, then 1β¦30
header_cells = (
"<th style='border:1px solid #ccc; padding:6px; "
"background:#f7f7f7; text-align:center;'>Rank</th>"
+ "".join(
f"<th style='border:1px solid #ccc; padding:6px; "
f"background:#f7f7f7; text-align:center'>{r+1}</th>"
for r in range(len(topk))
)
)
# 2) build the residue row: leading βResidueβ, then the residue tokens
residue_cells = (
"<th style='border:1px solid #ccc; padding:6px; "
"background:#f7f7f7; text-align:center;'>Residue</th>"
+ "".join(
f"<td style='border:1px solid #ccc; padding:6px; "
f"text-align:center'>{p_tokens_full[i]}</td>"
for i in topk
)
)
# 3) build the position row: leading βPositionβ, then the residue positions
position_cells = (
"<th style='border:1px solid #ccc; padding:6px; "
"background:#f7f7f7; text-align:center;'>Position</th>"
+ "".join(
f"<td style='border:1px solid #ccc; padding:6px; "
f"text-align:center'>{p_indices_full[i]}</td>"
for i in topk
)
)
# 4) assemble your table_html
table_html = (
f"<h4 style='margin-bottom:12px'>"
f"Drug atom #{orig_idx} <code>{drug_tok_text}</code> β Top-30 Protein residues"
f"</h4>"
f"<table style='border-collapse:collapse; margin:0 auto 24px;'>"
f"<tr>{header_cells}</tr>"
f"<tr>{residue_cells}</tr>"
f"<tr>{position_cells}</tr>"
f"</table>"
)
buf_png = io.BytesIO()
fig.savefig(buf_png, format="png", dpi=140)
buf_png.seek(0)
buf_pdf = io.BytesIO()
fig.savefig(buf_pdf, format="pdf")
buf_pdf.seek(0)
plt.close(fig)
png_b64 = base64.b64encode(buf_png.getvalue()).decode()
pdf_b64 = base64.b64encode(buf_pdf.getvalue()).decode()
html_heat = (
f"<div style='position: relative; width: 100%;'>"
# the PDF button, absolutely positioned
f"<a href='data:application/pdf;base64,{pdf_b64}' download='attention_heatmap.pdf' "
"style='position: absolute; top: 12px; right: 12px; "
"background: var(--primary); color: #fff; "
"padding: 8px 16px; border-radius: 6px; "
"font-size: 0.9rem; font-weight: 500; "
"text-decoration: none;'>"
"Download PDF"
"</a>"
# the clickable heatβmap image
f"<a href='data:image/png;base64,{png_b64}' target='_blank' title='Click to enlarge'>"
f"<img src='data:image/png;base64,{png_b64}' "
"style='display: block; width: 100%; height: auto; cursor: zoom-in;'/>"
"</a>"
"</div>"
)
return table_html + html_heat
# βββββ Gradio Callbacks βββββββββββββββββββββββββββββββββββββββββ
ROOT = os.path.dirname(os.path.abspath(__file__))
FOLDSEEK_BIN = os.path.join(ROOT, "bin", "foldseek")
def extract_sequence_cb(structure_file):
if structure_file is None or not os.path.exists(structure_file.name):
return ""
parsed = get_struc_seq(FOLDSEEK_BIN, structure_file.name, None, plddt_mask=False)
first_chain = next(iter(parsed))
_, _, struct_seq = parsed[first_chain]
return struct_seq
def inference_cb(prot_seq, drug_seq, atom_idx):
if not prot_seq:
return "<p style='color:red'>Please extract or enter a protein sequence first.</p>"
if not drug_seq.strip():
return "<p style='color:red'>Please enter a drug sequence.</p>"
if not drug_seq.strip().startswith("["):
conv = smiles_to_selfies(drug_seq.strip())
if conv is None:
return "<p style='color:red'>SMILESβSELFIES conversion failed.</p>"
drug_seq = conv
loader = DataLoader([(prot_seq, drug_seq, 1)], batch_size=1, collate_fn=collate_fn)
feats = get_case_feature(encoding, loader)
model = FusionDTI(446, 768, args).to(DEVICE)
ckpt = os.path.join(f"{args.save_path_prefix}{args.dataset}_{args.fusion}", "best_model.ckpt")
if os.path.isfile(ckpt):
model.load_state_dict(torch.load(ckpt, map_location=DEVICE))
return visualize_attention(model, feats, int(atom_idx)-1 if atom_idx else None)
def clear_cb():
return None, "", "", None, ""
# βββββ Gradio Interface Definition βββββββββββββββββββββββββββββββ
css = """
:root {
--bg: #f3f4f6;
--card: #ffffff;
--border: #e5e7eb;
--primary: #6366f1;
--primary-dark: #4f46e5;
--text: #111827;
}
* { box-sizing: border-box; margin: 0; padding: 0; }
body { background: var(--bg); color: var(--text); font-family: Inter,system-ui,Arial,sans-serif; }
h1 { font-family: Poppins,Inter,sans-serif; font-weight: 600; font-size: 2rem; text-align: center; margin: 24px 0; }
button, .gr-button { font-family: Inter,sans-serif; font-weight: 600; }
#project-links { text-align: center; margin-bottom: 32px; }
#project-links .gr-button { margin: 0 8px; min-width: 160px; }
#project-links .gr-button:nth-child(1) { background: #10b981; }
#project-links .gr-button:nth-child(2) { background: #ef4444; }
#project-links .gr-button:nth-child(3) { background: #3b82f6; }
#project-links .gr-button:hover { opacity: 0.9; }
.link-btn{display:inline-block;margin:0 8px;padding:10px 20px;border-radius:8px;
color:white;font-weight:600;text-decoration:none;box-shadow:0 2px 6px rgba(0,0,0,0.12);
transition:all .2s ease-in-out;}
.link-btn:hover{opacity:.9;}
.link-btn.project{background:linear-gradient(to right,#10b981,#059669);}
.link-btn.arxiv {background:linear-gradient(to right,#ef4444,#dc2626);}
.link-btn.github {background:linear-gradient(to right,#3b82f6,#2563eb);}
/* make *all* gradio buttons a bit taller */
.gr-button { min-height: 10px !important; }
/* now target just our two big action buttons */
#extract-btn, #inference-btn {
width: 5px !important;
min-height: 36px !important;
margin-top: 12px !important;
}
/* and make clear button full width but shorter */
#clear-btn {
width: 10px !important;
min-height: 36px !important;
margin-top: 12px !important;
}
#input-card label {
font-weight: 600 !important; /* make the text bold */
color: var(--text) !important; /* use your standard text color */
}
.card {
background: var(--card);
border: 1px solid var(--border);
border-radius: 12px;
padding: 24px;
max-width: 1000px;
margin: 0 auto 32px;
box-shadow: 0 2px 6px rgba(0,0,0,0.05);
}
#guidelines-card h2 {
font-size: 1.4rem;
margin-bottom: 16px;
text-align: center;
}
#guidelines-card ol {
margin-left: 20px;
line-height: 1.6;
font-size: 1rem;
}
#input-card .gr-row, #input-card .gr-cols {
gap: 16px;
}
#input-card .gr-button {
flex: 1;
}
#output-card {
padding-top: 0;
}
"""
with gr.Blocks(css=css) as demo:
# βββββββββββββ Title βββββββββββββ
gr.Markdown(
"<h1 style='text-align: center;'>Token-level Visualiser for Drug-Target Interaction</h1>"
)
# βββββββββββββ Project Links βββββββββββββ
gr.Markdown("""
<div style="text-align:center;margin-bottom:32px;">
<a class="link-btn project" href="https://zhaohanm.github.io/FusionDTI.github.io/" target="_blank">π Project Page</a>
<a class="link-btn arxiv" href="https://arxiv.org/abs/2406.01651" target="_blank">π ArXiv: 2406.01651</a>
<a class="link-btn github" href="https://github.com/ZhaohanM/FusionDTI" target="_blank">π» GitHub Repo</a>
</div>
""")
# βββββββββββββ Guidelines Card βββββββββββββ
gr.HTML(
"""
<div class="card" style="margin-bottom:24px">
<h2 style="font-size:1.2rem;margin-bottom:14px">Guidelines for User</h2>
<ul style="font-size:1rem; margin-left:18px;line-height:1.55;list-style:decimal;">
<li><strong>Convert protein structure into a structure-aware sequence:</strong>
Upload a <code>.pdb</code> or <code>.cif</code> file. A structure-aware
sequence will be generated using
<a href="https://github.com/steineggerlab/foldseek" target="_blank">Foldseek</a>,
based on 3D structures from
<a href="https://alphafold.ebi.ac.uk" target="_blank">AlphaFold DB</a> or the
<a href="https://www.rcsb.org" target="_blank">Protein Data Bank (PDB)</a>.</li>
<li><strong>If you only have an amino acid sequence or a UniProt ID,</strong>
you must first visit the
<a href="https://www.rcsb.org" target="_blank">Protein Data Bank (PDB)</a>
or <a href="https://alphafold.ebi.ac.uk" target="_blank">AlphaFold DB</a>
to search and download the corresponding <code>.cif</code> or <code>.pdb</code> file.</li>
<li><strong>Drug input supports both SELFIES and SMILES:</strong><br>
You can enter a SELFIES string directly, or paste a SMILES string.
SMILES will be automatically converted to SELFIES using
<a href="https://github.com/aspuru-guzik-group/selfies" target="_blank">SELFIES encoder</a>.
If conversion fails, a red error message will be displayed.</li>
<li>Optionally enter a <strong>1-based</strong> drug atom or substructure index
to highlight the Top-30 interacting protein residues.</li>
<li>After inference, you can use the
βDownload PDFβ link to export a high-resolution vector version.</li>
</ul>
</div>
""")
# βββββββββββββ Input Card βββββββββββββ
with gr.Column(elem_id="input-card", elem_classes="card"):
protein_seq = gr.Textbox(
label="Protein Structure-aware Sequence",
lines=3,
elem_id="protein-seq"
)
drug_seq = gr.Textbox(
label="Drug Sequence (SELFIES/SMILES)",
lines=3,
elem_id="drug-seq"
)
structure_file = gr.File(
label="Upload Protein Structure (.pdb/.cif)",
file_types=[".pdb", ".cif"],
elem_id="structure-file"
)
drug_idx = gr.Number(
label="Drug atom/substructure index (1-based)",
value=None,
precision=0,
elem_id="drug-idx"
)
# βββββββββββββ Action Buttons βββββββββββββ
with gr.Row(elem_id="action-buttons", equal_height=True):
btn_extract = gr.Button(
"Extract sequence",
variant="primary",
elem_id="extract-btn"
)
btn_infer = gr.Button(
"Inference",
variant="primary",
elem_id="inference-btn"
)
with gr.Row():
clear_btn = gr.Button(
"Clear",
variant="secondary",
elem_classes="full-width",
elem_id="clear-btn"
)
# βββββββββββββ Output Visualization βββββββββββββ
output_html = gr.HTML(elem_id="result-html")
# βββββββββββββ Event Wiring βββββββββββββ
btn_extract.click(
fn=extract_sequence_cb,
inputs=[structure_file],
outputs=[protein_seq]
)
btn_infer.click(
fn=inference_cb,
inputs=[protein_seq, drug_seq, drug_idx],
outputs=[output_html]
)
clear_btn.click(
fn=lambda: ("", "", None, "", None),
inputs=[],
outputs=[protein_seq, drug_seq, drug_idx, output_html, structure_file]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|