Spaces:
Running
Running
File size: 1,596 Bytes
81dc3a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
from PIL import Image, UnidentifiedImageError
from utils import *
def get_evaluation_data(ds):
evaluation_data = []
for i in range(len(ds)):
try:
img = ds[i]["image"]
thumbnail_img = img.copy()
thumbnail_img.thumbnail((256, 256))
evaluation_data.append({
"id": ds[i]["ex_id"],
"image_thumbnail": image_to_base64(thumbnail_img),
"image_full": image_to_base64(img),
"image_full_url": "https://huggingface.co/", # Dummy
"prompt": ds[i]["prompt"],
"category": ds[i]["category"]
})
except (UnidentifiedImageError, OSError, ValueError): # To handle .heic images -> can be removed when dataset is fixed
img = Image.new("RGB", (256, 256), color="white")
evaluation_data.append({
"id": i,
"image_thumbnail": image_to_base64(img),
"image_full": image_to_base64(img),
"image_full_url": "https://huggingface.co/", # Dummy
"prompt": "Dummy prompt",
"category": "Dummy category"
})
return evaluation_data
def get_model_names():
models = ["Qwen2.5-VL", "gemma-3"]
return models
def get_responses():
responses = {
"Qwen2.5-VL": {
0: "Laws of the Universe - Toro y Moi",
1: "Smile, have a nice day!",
},
"gemma-3": {
0: "Houdini - Dua Lipa",
1: "Smile, you're on camera!"
},
}
return responses |