Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,783 Bytes
e546fea f64024f 958511f e546fea f64024f 958511f b218be6 f64024f 958511f e546fea f64024f e546fea 958511f 3e75999 b218be6 2d64873 f64024f 2d64873 958511f e546fea 3e75999 2d64873 b218be6 f64024f 2d64873 b218be6 2d64873 e546fea f64024f b218be6 20a2fe0 b218be6 b2b24c7 b218be6 958511f f64024f b218be6 e546fea f64024f 958511f b218be6 958511f e546fea fd00e11 e546fea fd00e11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import gradio as gr
from gradio_imageslider import ImageSlider
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
# Set precision for better performance
torch.set_float32_matmul_precision(["high", "highest"][0])
# Load the BiRefNet model for image segmentation
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
# Define image transformation pipeline
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
# Main function to handle image processing
def fn(image):
im = load_img(image, output_type="pil")
im = im.convert("RGB")
origin = im.copy()
processed_image = process(im)
return (processed_image, origin)
# Process function that runs on GPU
@spaces.GPU
def process(image):
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cuda")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return image
# Process function for file output
def process_file(f):
name_path = f.rsplit(".", 1)[0] + ".png"
im = load_img(f, output_type="pil")
im = im.convert("RGB")
transparent = process(im)
transparent.save(name_path)
return name_path
# Define UI components
slider1 = ImageSlider(label="Processed Image", type="pil")
slider2 = ImageSlider(label="Processed Image from URL", type="pil")
image_upload = gr.Image(label="Upload an image")
image_file_upload = gr.Image(label="Upload an image", type="filepath")
url_input = gr.Textbox(label="Paste an image URL")
output_file = gr.File(label="Output PNG File")
# Example images
chameleon = load_img("butterfly.jpg", output_type="pil")
url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
# Create interfaces for each tab
tab1 = gr.Interface(fn, inputs=image_upload, outputs=slider1, examples=[chameleon], api_name="image")
tab2 = gr.Interface(fn, inputs=url_input, outputs=slider2, examples=[url_example], api_name="text")
tab3 = gr.Interface(process_file, inputs=image_file_upload, outputs=output_file, examples=["butterfly.jpg"], api_name="png")
# Create tabbed interface
demo = gr.TabbedInterface(
[tab1, tab2, tab3], ["Image Upload", "URL Input", "File Output"], title="Background Removal Tool"
)
# Launch the app with minimal parameters
if __name__ == "__main__":
demo.launch(show_error=True) |