Spaces:
Running
Running
File size: 48,583 Bytes
7d2cb2c 5b9a774 85e3677 b34cb70 5e933dd d2d5f7f d431a9a e8de13a 2e8ab30 2fd1ae7 85e3677 2c4a6e2 c47a2b5 8a2ddfa ce9fd78 c3e4281 dfc7a97 ca52d3a fbe5fbd 55ff71e 425bd95 e8cd846 fd03c70 e9e5834 4f25db7 fbe5fbd 93997a6 013ac54 7d2cb2c f0355f6 d0c9345 4a510d9 156a4dc 4a510d9 dfc7a97 4a510d9 4aed0d9 792231b 842adf4 4f66704 842adf4 37be4a3 95de8cb 911f1e0 95de8cb 37be4a3 a6a4d07 35018ca a6a4d07 e9e5834 f7ce532 4a510d9 293eece 93a9346 46e005c 93a9346 275dd29 af70c99 46e005c e9e5834 46e005c 4a510d9 a344527 dfc7a97 a344527 4a510d9 6295f49 4a510d9 b7c7943 4a510d9 b676e6b b34cb70 85986f1 bd9e804 ec894d6 b3cdd67 ec894d6 9cca3a1 02426fb 5e933dd 01bccaf ec894d6 109f3ff 962d9a2 1166eef 962d9a2 109f3ff 962d9a2 01bccaf 962d9a2 08e56ad 8749396 481f7d9 cf24738 f4e1e2d ba6e97c 8749396 181888a 8749396 962d9a2 1272c35 4d2ca0e fc2a85b 1272c35 4d2ca0e 1272c35 d4e5999 80942de d4e5999 0b29908 d4e5999 0396c92 d4e5999 962d9a2 9d5fec9 109f3ff 25ad40c 109f3ff ec894d6 109f3ff 02426fb ec894d6 109f3ff ec894d6 bd9e804 324c741 bd9e804 ec894d6 db6e4d8 09826d1 ec894d6 b34cb70 eecc65d 9a00c73 074f55e d4b5ba8 074f55e d4b5ba8 074f55e 5ff8b40 ec894d6 b34cb70 ec894d6 2043dcc b34cb70 8749396 d6a1c64 ec894d6 b34cb70 1166eef 7f4b84d 1166eef 7f4b84d b34cb70 1166eef 0a65f10 7f4b84d 0a65f10 1166eef 7f4b84d 1166eef 08e56ad 1272c35 08e56ad 1272c35 d4e5999 d7b20d7 8739f2f c5b3d59 f81b168 d4e5999 c5b3d59 5b9a774 c5b3d59 d4e5999 5b9a774 7bd46eb 5b9a774 e308dfe d4e5999 e308dfe d4e5999 c5b3d59 d4e5999 08e56ad 01bccaf 1166eef 01bccaf f0355f6 c3ae3ca e2d0f14 b0834fb e2d0f14 cadcf00 55b3602 99799cf e9e5834 2718d04 cadcf00 e2d0f14 2718d04 e2d0f14 d4bc468 179a8d2 a6a4d07 d4bc468 f7ce532 abc97b2 3304984 d4cc95f 3304984 d4cc95f 3304984 abc97b2 5e933dd 35018ca 4f25db7 17e4571 abc97b2 17e4571 5c5fc85 a53c765 ac05917 a53c765 e8cd846 a53c765 e8cd846 a53c765 e8cd846 a53c765 e8cd846 a53c765 e8cd846 a53c765 e8cd846 a53c765 e8cd846 a53c765 ec894d6 e2d0f14 845d9e9 8749396 845d9e9 5ff8b40 8749396 845d9e9 55ff71e abcb574 55ff71e 1272c35 4aed0d9 792231b dfbeab3 44e14b4 b647a26 44e14b4 e9e5834 dfbeab3 e9e5834 dfbeab3 e9e5834 4aed0d9 792231b 842adf4 792231b 4aed0d9 4f66704 a6a4d07 9d0013d 809c702 bd1a5a2 4f66704 37be4a3 845d9e9 fc798ed 2718d04 55727a8 2718d04 ec894d6 af0a809 e9e5834 af0a809 e9e5834 7d2cb2c e9e5834 7d2cb2c e9e5834 7d2cb2c e9e5834 7d2cb2c e9e5834 7d2cb2c b867a4b e9e5834 e1427b2 e9e5834 7d2cb2c e9e5834 7d2cb2c e9e5834 7d2cb2c e9e5834 7d2cb2c e9e5834 7d2cb2c e9e5834 7d2cb2c a3fad52 f052698 e9e5834 7d2cb2c e9e5834 7d2cb2c e9e5834 7d2cb2c e9e5834 7d2cb2c e9e5834 55ef9b4 e9e5834 55ef9b4 e9e5834 7d2cb2c e9e5834 7d2cb2c e9e5834 7d2cb2c e9e5834 fc798ed e9e5834 55ef9b4 e9e5834 7d2cb2c e9e5834 e1427b2 e9e5834 e1427b2 7d2cb2c e9e5834 e1427b2 e9e5834 7d2cb2c e1427b2 7d2cb2c e9e5834 e1427b2 e9e5834 7d2cb2c 7885ebe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from io import StringIO
import logging
from pathlib import Path
from prompt_settings import verification_of_final_answer, verification_of_final_answer2, yaml_template, yaml_template2
from duckduckgo_search import DDGS
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
Settings,
set_global_handler
)
from llama_index.core.tools import FunctionTool
from llama_index.agent.openai import OpenAIAgent
from llama_index.llms.openai import OpenAI as LlamaOpenAI
from openai import OpenAI as OpenAIClient
#per i file multimediali
import base64
import json
from PIL import Image
from io import BytesIO
from typing import List
import re
import importlib.metadata
import random
import time
import yt_dlp
import traceback
set_global_handler("simple") # imposta un handler semplice per il logging
logging.getLogger().setLevel(logging.DEBUG) # imposta il livello di log a DEBUG
class BasicAgent:
def __init__(self):
try:
print("coso Initializing LlamaIndex-based agent...")
# Leggi la chiave OpenAI dall'ambiente
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
raise ValueError("OPENAI_API_KEY not set!")
# Imposta il logger
logging.basicConfig(level=logging.DEBUG)
# Tool per estrarre ingredienti
ingredient_tool = FunctionTool.from_defaults(
name="extract_ingredients",
fn=extract_ingredients,
description="Extracts and returns a comma-separated, alphabetized list of ingredients for a pie filling from a transcription string."
)
search_tool = FunctionTool.from_defaults(
name="web_search",
fn=web_search,
description="Performs a DuckDuckGo search and returns the top 3 results."
)
log_thought_tool = FunctionTool.from_defaults(
name="log_thought",
fn=log_thought,
description="Logs the agent's thought process for debugging purposes."
)
sum_list_tool = FunctionTool.from_defaults(
name="sum_list",
fn=sum_list,
description="Takes a list of float numbers and returns their sum."
)
final_answer = FunctionTool.from_defaults(
name="final_answer",
fn=final_answer_tool,
description =
'''
Use this ONLY at the end. You must pass a string containing ONLY the final answer, with no explanations or formatting.
If the answer is a list, pass it as a plain comma-separated string.
Example: 'cornstarch, granulated sugar, freshly squeezed lemon juice, ripe strawberries, vanilla extract'
'''
)
is_food_tool = FunctionTool.from_defaults(
name="is_food",
fn=is_food,
description="Takes a list of item names (such as menu categories) and returns a string tagging each item as either food or not. The result is a comma-separated list like 'burgers: True, soda: False'."
)
transcribe_youtube_tool = FunctionTool.from_defaults(
name="transcribe_youtube_audio",
fn=transcribe_youtube_audio,
description=(
"Use this tool when the task involves a YouTube link and requires analyzing the spoken content of the video. "
"It downloads the audio from the given YouTube URL and transcribes it using Whisper. "
"Use this to extract speech from interviews, discussions, lectures, or any video where the spoken content is relevant. "
"Returns only the transcribed text."
)
)
# Registra il tool
#Settings.tools = [ingredient_tool]
llm = LlamaOpenAI(
model="gpt-4o",
temperature=0.0,
api_key=openai_api_key
)
self.agent = OpenAIAgent.from_tools(
tools = [ingredient_tool, log_thought_tool, sum_list_tool, search_tool, is_food_tool, transcribe_youtube_tool, final_answer],
llm = llm,
verbose = True,
max_steps=30
)
# Client OpenAI per chiamate esterne (immagini/audio)
self.client = OpenAIClient(api_key=openai_api_key) # per .chat, .audio, ecc.
Settings.llm = llm
# Carica i documenti
self.documents = SimpleDirectoryReader("data").load_data()
self.index = VectorStoreIndex.from_documents(self.documents, settings=Settings)
self.query_engine = self.index.as_query_engine()
print("coso Agent ready.")
except Exception as e:
import traceback
print_coso(f"Error instantiating agent: {e}")
traceback.print_exc()
def __call__(self, question: str, file_info: str = "") -> str:
print_coso(f"Received question: {question[:100]}")
# Prova a decodificare JSON
try:
q_data = json.loads(question)
except json.JSONDecodeError:
q_data = {"question": question}
text = q_data.get("question", "")
#file_info = q_data.get("file_name", "")
print_coso(f"__call__ q_data: {q_data}")
print_coso(f"__call__ text: {text}")
print_coso(f"__call__ file_info: {file_info}")
text = f"{yaml_template} {verification_of_final_answer2} {text}"
# Se Γ¨ presente un file, gestiscilo
risposta = ""
if file_info.endswith((".png", ".jpg", ".jpeg")):
print("coso Image file detected, processing with GPT-4o")
image = get_or_download_image(file_info)
response = self._ask_gpt4o_with_image(image, text)
risposta = response
elif file_info.endswith(".wav") or file_info.endswith(".mp3"):
print("coso Audio file detected, processing with Whisper")
audio_bytes = get_or_download_audio(file_info)
if audio_bytes is not None:
audio_file = BytesIO(audio_bytes)
print_coso(f"in mp3 audio_file: {audio_file}")
audio_file.name = file_info
transcription = self._transcribe_audio(audio_file)
prompt_con_audio = (
f"The following is the transcription of an audio file related to the question.\n"
f"---\n"
f"{transcription}\n"
f"---\n"
f"Now, based on this transcription, answer the following question:\n"
f"{question}"
)
risposta = self._ask_gpt4o(prompt_con_audio)
else:
risposta = "Error loading audio file"
elif file_info.endswith(".py"):
print_coso("Python code file detected")
code_content = get_or_download_code(file_info)
print_coso(f"Python code before prompt: {code_content}")
prompt_python = (
"The following Python code is attached. Please analyze it and provide the final output of the code; your final answer must be only the final output of the code, don not provide any explanation of presentation of the result.\n\n"
f"{code_content}\n\n"
f"Question: {question}"
)
risposta = self._ask_gpt4o(prompt_python)
elif file_info.endswith(".xlsx"):
print_coso("Excel file detected")
excel_text = _load_excel_as_text(file_info)
print_coso(f"Excel before prompt: {excel_text}")
prompt = (
"The following is the text extracted from an Excel spreadsheet, the symbol `|` is used to separate each column. \n"
"Please use it to answer the question that follows:\n\n"
f"{excel_text}\n\n"
f"Question: {question}\n"
"Provide only the final answer. If it is a number, format it with two decimal places if relevant. Unless it is specifically requested, return only the final numeric result, as a plain number with no currency symbol, no commas, and no additional text. For example, write '89706.00', not '$89,706.00'. Do not explain."
)
risposta = self._ask_gpt4o(prompt)
elif file_info.endswith(".txt"):
print("coso Text file detected")
text_content = self._load_text(file_info)
risposta = self._ask_gpt4o(text_content)
else:
print_coso("nessun file allegato")
# Altrimenti gestisci solo testo
risposta = self._ask_gpt4o(text)
print_coso(f"risposta: {risposta}")
return risposta
def _ask_gpt4o(self, text: str) -> str:
response = self.agent.chat(text)
print_coso("==== Full Agent Response ====")
print_coso(response)
print_coso("=============================")
return str(response)
'''
messages = [{"role": "user", "content": text}]
response = self.client.chat.completions.create(
model="gpt-4o-mini",
temperature=0,
messages=messages
)
return response.choices[0].message.content.strip()
'''
def _ask_gpt4o_with_image(self, image: Image.Image, question: str) -> str:
buffered = BytesIO()
image.save(buffered, format="PNG")
buffered.seek(0)
image_bytes = buffered.read()
response = self.client.chat.completions.create(
model="gpt-4o", #ATTENZIONE QUI MODELLO NON MINI
temperature=0,
messages=[{
"role": "user",
"content": [
{"type": "text", "text": question},
{"type": "image_url", "image_url": {"url": "data:image/png;base64," + base64.b64encode(image_bytes).decode()}}
]
}]
)
return response.choices[0].message.content.strip()
def _transcribe_audio(self, audio_bytes: BytesIO) -> str:
#audio_file = BytesIO(audio_bytes)
#transcription = self.client.audio.transcriptions.create(model="whisper-1", file=audio_bytes)
transcription = self.client.audio.transcriptions.create(
file=audio_bytes,
model="whisper-1",
#api_key=os.getenv(openai_api_key)
)
print_coso(f"usato _transcribe_audio: {transcription}")
return transcription.text.strip()
def _load_image(self, data: str) -> Image.Image:
print_coso(f"_load_image: {data}")
try:
coso = Image.open(BytesIO(base64.b64decode(data)))
return coso
except Exception as e:
print_coso(f"_load_image error: {e}")
return None
def _load_bytes(self, file_name: str) -> bytes:
file_path = os.path.join("/data", file_name)
try:
with open(file_path, "rb") as f:
return f.read()
except Exception as e:
print_coso(f"Error loading file {file_path}: {e}")
return None
def _load_text(self, data: str) -> str:
return base64.b64decode(data).decode("utf-8")
def get_or_download_image(file_name: str) -> Image.Image:
import os
import requests
from PIL import Image
from io import BytesIO
file_path = os.path.join("data", file_name)
hf_token = os.getenv("HF_TOKEN_READ")
if not hf_token:
print("[ERRORE] HF_TOKEN_READ non trovato. Imposta la variabile d'ambiente HF_TOKEN_READ.")
return None
if not os.path.exists(file_path):
print(f"[INFO] File {file_name} non trovato in /data, lo scarico...")
url = f"https://huggingface.co/datasets/gaia-benchmark/GAIA/resolve/main/2023/validation/{file_name}"
headers = {"Authorization": f"Bearer {hf_token}"}
try:
response = requests.get(url, headers=headers)
response.raise_for_status()
with open(file_path, "wb") as f:
f.write(response.content)
print(f"[INFO] Scaricato e salvato in {file_path}")
except Exception as e:
print(f"[ERRORE] Impossibile scaricare l'immagine: {e}")
return None
try:
return Image.open(file_path)
except Exception as e:
print(f"[ERRORE] Impossibile aprire l'immagine {file_path}: {e}")
return None
def get_or_download_audio(file_name: str) -> bytes:
import os
import requests
file_path = os.path.join("data", file_name)
hf_token = os.getenv("HF_TOKEN_READ")
if not hf_token:
print("[ERRORE] HF_TOKEN_READ non trovato. Imposta la variabile d'ambiente HF_TOKEN_READ.")
return None
if not os.path.exists(file_path):
print(f"[INFO] File {file_name} non trovato in /data, lo scarico...")
url = f"https://huggingface.co/datasets/gaia-benchmark/GAIA/resolve/main/2023/validation/{file_name}"
headers = {"Authorization": f"Bearer {hf_token}"}
try:
response = requests.get(url, headers=headers)
response.raise_for_status()
with open(file_path, "wb") as f:
f.write(response.content)
print(f"[INFO] Scaricato e salvato in {file_path}")
except Exception as e:
print(f"[ERRORE] Impossibile scaricare il file audio: {e}")
return None
try:
with open(file_path, "rb") as f:
return f.read()
except Exception as e:
print(f"[ERRORE] Impossibile leggere il file audio {file_path}: {e}")
return None
def get_or_download_code(file_name: str) -> str:
import os
import requests
file_path = os.path.join("data", file_name)
hf_token = os.getenv("HF_TOKEN_READ")
if not os.path.exists(file_path):
print(f"[INFO] File {file_name} non trovato. Scarico...")
url = f"https://huggingface.co/datasets/gaia-benchmark/GAIA/resolve/main/2023/validation/{file_name}"
headers = {"Authorization": f"Bearer {hf_token}"}
response = requests.get(url, headers=headers)
response.raise_for_status()
with open(file_path, "wb") as f:
f.write(response.content)
print(f"[INFO] Scaricato in {file_path}")
with open(file_path, "r") as f:
return f.read()
def _load_excel_as_text(file_name: str) -> str:
import pandas as pd
import os
import requests
from io import StringIO
file_path = os.path.join("data", file_name)
hf_token = os.getenv("HF_TOKEN_READ")
# Scarica il file se non esiste localmente
if not os.path.exists(file_path):
print_coso(f"[INFO] File {file_name} non trovato. Scarico...")
url = f"https://huggingface.co/datasets/gaia-benchmark/GAIA/resolve/main/2023/validation/{file_name}"
headers = {"Authorization": f"Bearer {hf_token}"}
try:
response = requests.get(url, headers=headers)
response.raise_for_status()
with open(file_path, "wb") as f:
f.write(response.content)
print(f"[INFO] Scaricato e salvato in {file_path}")
except Exception as e:
print(f"[ERRORE] Impossibile scaricare il file Excel: {e}")
return "ERROR: Could not download Excel file."
try:
df = pd.read_excel(file_path)
df = df.applymap(lambda x: f"{x:.2f}" if isinstance(x, float) else x)
# Costruzione della tabella markdown-style
header = "| " + " | ".join(df.columns) + " |"
separator = "| " + " | ".join(["---"] * len(df.columns)) + " |"
rows = df.astype(str).apply(lambda row: "| " + " | ".join(row) + " |", axis=1).tolist()
table_text = "\n".join([header, separator] + rows)
return table_text
except Exception as e:
print(f"[ERRORE] Impossibile leggere il file Excel: {e}")
return "ERROR: Could not read Excel file."
def _load_excel_as_text2(file_name: str) -> str:
import pandas as pd
import os
import requests
file_path = os.path.join("data", file_name)
hf_token = os.getenv("HF_TOKEN_READ")
# Scarica il file se non esiste localmente
if not os.path.exists(file_path):
print_coso(f"[INFO] File {file_name} non trovato. Scarico...")
url = f"https://huggingface.co/datasets/gaia-benchmark/GAIA/resolve/main/2023/validation/{file_name}"
headers = {"Authorization": f"Bearer {hf_token}"}
try:
response = requests.get(url, headers=headers)
response.raise_for_status()
with open(file_path, "wb") as f:
f.write(response.content)
print(f"[INFO] Scaricato e salvato in {file_path}")
except Exception as e:
print(f"[ERRORE] Impossibile scaricare il file Excel: {e}")
return "ERROR: Could not download Excel file."
# Leggi il contenuto
try:
#xl = pd.ExcelFile(file_path)
xl = pd.read_excel(file_path)
print_coso(f"excel: {xl}")
#sheets = xl.sheet_names
xl = xl.applymap(lambda x: f"{x:.2f}" if isinstance(x, float) else x)
# Esporta in formato CSV con separatore "pipe" per chiarezza (| colonna |)
csv_buffer = StringIO()
xl.to_csv(csv_buffer, index=False)
xl_string = csv_buffer.getvalue()
csv_buffer.close()
return xl_string
'''
all_text = ""
for sheet in sheets:
df = xl.parse(sheet)
all_text += f"\nSheet: {sheet}\n"
all_text += df.to_string(index=False)
return all_text
'''
except Exception as e:
print(f"[ERRORE] Impossibile leggere il file Excel: {e}")
return "ERROR: Could not read Excel file."
'''
base_url = "https://huggingface.co/datasets/gaia-benchmark/GAIA/resolve"
commit_hash = "86620fe7a265fdd074ea8d8c8b7a556a1058b0af"
full_url = f"{base_url}/{commit_hash}/2023/validation/{file_name}"
'''
whiteList = [
{
'task_id': '99c9cc74-fdc8-46c6-8f8d-3ce2d3bfeea3',
'question': 'Hi, I\'m making a pie but I could use some help with my shopping list. I have everything I need for the crust, but I\'m not sure about the filling. I got the recipe from my friend Aditi, but she left it as a voice memo and the speaker on my phone is buzzing so I can\'t quite make out what she\'s saying. Could you please listen to the recipe and list all of the ingredients that my friend described? I only want the ingredients for the filling, as I have everything I need to make my favorite pie crust. I\'ve attached the recipe as Strawberry pie.mp3.\n\nIn your response, please only list the ingredients, not any measurements. So if the recipe calls for "a pinch of salt" or "two cups of ripe strawberries" the ingredients on the list would be "salt" and "ripe strawberries".\n\nPlease format your response as a comma separated list of ingredients. Also, please alphabetize the ingredients.',
'Level': '1',
'file_name': '99c9cc74-fdc8-46c6-8f8d-3ce2d3bfeea3.mp3'
},
{
"task_id":"f918266a-b3e0-4914-865d-4faa564f1aef",
"question":"What is the final numeric output from the attached Python code?",
"Level":"1",
"file_name":"f918266a-b3e0-4914-865d-4faa564f1aef.py"
},
{
"task_id":"7bd855d8-463d-4ed5-93ca-5fe35145f733",
"question":"The attached Excel file contains the sales of menu items for a local fast-food chain. What were the total sales that the chain made from food (not including drinks)? Express your answer in USD with two decimal places.",
"Level":"1",
"file_name":"7bd855d8-463d-4ed5-93ca-5fe35145f733.xlsx"
},
{
"task_id":"1f975693-876d-457b-a649-393859e79bf3",
"question":"Hi, I was out sick from my classes on Friday, so I'm trying to figure out what I need to study for my Calculus mid-term next week. My friend from class sent me an audio recording of Professor Willowbrook giving out the recommended reading for the test, but my headphones are broken :(\n\nCould you please listen to the recording for me and tell me the page numbers I'm supposed to go over? I've attached a file called Homework.mp3 that has the recording. Please provide just the page numbers as a comma-delimited list. And please provide the list in ascending order.",
"Level":"1",
"file_name":"1f975693-876d-457b-a649-393859e79bf3.mp3"
},
{
"task_id":"4fc2f1ae-8625-45b5-ab34-ad4433bc21f8",
"question":"Who nominated the only Featured Article on English Wikipedia about a dinosaur that was promoted in November 2016?",
"Level":"1",
"file_name":""
},
{
"task_id":"2d83110e-a098-4ebb-9987-066c06fa42d0",
"question":".rewsna eht sa \"tfel\" drow eht fo etisoppo eht etirw ,ecnetnes siht dnatsrednu uoy fI",
"Level":"1",
"file_name":""
},
{"task_id":"cf106601-ab4f-4af9-b045-5295fe67b37d","question":"What country had the least number of athletes at the 1928 Summer Olympics? If there's a tie for a number of athletes, return the first in alphabetical order. Give the IOC country code as your answer.","Level":"1","file_name":""},
]
blackList = [
{
"task_id":"cca530fc-4052-43b2-b130-b30968d8aa44",
"question":"Review the chess position provided in the image. It is black's turn. Provide the correct next move for black which guarantees a win. Please provide your response in algebraic notation.",
"Level":"1",
"file_name":"cca530fc-4052-43b2-b130-b30968d8aa44.png"
},
{"task_id":"a1e91b78-d3d8-4675-bb8d-62741b4b68a6",
"question":"In the video https://www.youtube.com/watch?v=L1vXCYZAYYM, what is the highest number of bird species to be on camera simultaneously?"
,"Level":"1",
"file_name":""
},
{
'task_id': '9d191bce-651d-4746-be2d-7ef8ecadb9c2',
'question': 'Examine the video at https://www.youtube.com/watch?v=1htKBjuUWec.\n\nWhat does Teal\'c say in response to the question "Isn\'t that hot?"',
'Level': '1',
'file_name': ''
}
]
DOMANDE_MOCKATE = False
def create_mock_questions():
'''
{
'task_id': '8e867cd7-cff9-4e6c-867a-ff5ddc2550be',
'question': 'How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)? You can use the latest 2022 version of english wikipedia.',
'Level': '1',
'file_name': ''
},
{
"task_id": "5a0c1adf-205e-4841-a666-7c3ef95def9d",
"question": "What is the first name of the only Malko Competition recipient from the 20th Century (after 1977) whose nationality on record is a country that no longer exists?",
"Level": "1",
"file_name": ""
}
{
"task_id":"9d191bce-651d-4746-be2d-7ef8ecadb9c2",
"question":"Examine the video at https://www.youtube.com/watch?v=1htKBjuUWec.\n\nWhat does Teal\\'c say in response to the question \"Isn\\'t that hot?\"",
"Level":"1",
"file_name":""
}
'''
return testMock2
tempMock = [
{"task_id":"8e867cd7-cff9-4e6c-867a-ff5ddc2550be","question":"How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)? You can use the latest 2022 version of english wikipedia.","Level":"1","file_name":""},
{"task_id":"2d83110e-a098-4ebb-9987-066c06fa42d0","question":".rewsna eht sa \"tfel\" drow eht fo etisoppo eht etirw ,ecnetnes siht dnatsrednu uoy fI","Level":"1","file_name":""},
{"task_id":"cca530fc-4052-43b2-b130-b30968d8aa44","question":"Review the chess position provided in the image. It is black's turn. Provide the correct next move for black which guarantees a win. Please provide your response in algebraic notation.","Level":"1","file_name":"cca530fc-4052-43b2-b130-b30968d8aa44.png"},
{"task_id":"4fc2f1ae-8625-45b5-ab34-ad4433bc21f8","question":"Who nominated the only Featured Article on English Wikipedia about a dinosaur that was promoted in November 2016?","Level":"1","file_name":""},
{"task_id":"6f37996b-2ac7-44b0-8e68-6d28256631b4","question":"Given this table defining * on the set S = {a, b, c, d, e}\n\n|*|a|b|c|d|e|\n|---|---|---|---|---|---|\n|a|a|b|c|b|d|\n|b|b|c|a|e|c|\n|c|c|a|b|b|a|\n|d|b|e|b|e|d|\n|e|d|b|a|d|c|\n\nprovide the subset of S involved in any possible counter-examples that prove * is not commutative. Provide your answer as a comma separated list of the elements in the set in alphabetical order.","Level":"1","file_name":""},
{"task_id":"9d191bce-651d-4746-be2d-7ef8ecadb9c2","question":"Examine the video at https://www.youtube.com/watch?v=1htKBjuUWec.\n\nWhat does Teal'c say in response to the question \"Isn't that hot?\"","Level":"1","file_name":""},
{"task_id":"cabe07ed-9eca-40ea-8ead-410ef5e83f91","question":"What is the surname of the equine veterinarian mentioned in 1.E Exercises from the chemistry materials licensed by Marisa Alviar-Agnew & Henry Agnew under the CK-12 license in LibreText's Introductory Chemistry materials as compiled 08/21/2023?","Level":"1","file_name":""},
{"task_id":"3cef3a44-215e-4aed-8e3b-b1e3f08063b7","question":"I'm making a grocery list for my mom, but she's a professor of botany and she's a real stickler when it comes to categorizing things. I need to add different foods to different categories on the grocery list, but if I make a mistake, she won't buy anything inserted in the wrong category. Here's the list I have so far:\n\nmilk, eggs, flour, whole bean coffee, Oreos, sweet potatoes, fresh basil, plums, green beans, rice, corn, bell pepper, whole allspice, acorns, broccoli, celery, zucchini, lettuce, peanuts\n\nI need to make headings for the fruits and vegetables. Could you please create a list of just the vegetables from my list? If you could do that, then I can figure out how to categorize the rest of the list into the appropriate categories. But remember that my mom is a real stickler, so make sure that no botanical fruits end up on the vegetable list, or she won't get them when she's at the store. Please alphabetize the list of vegetables, and place each item in a comma separated list.","Level":"1","file_name":""},
{"task_id":"99c9cc74-fdc8-46c6-8f8d-3ce2d3bfeea3","question":"Hi, I'm making a pie but I could use some help with my shopping list. I have everything I need for the crust, but I'm not sure about the filling. I got the recipe from my friend Aditi, but she left it as a voice memo and the speaker on my phone is buzzing so I can't quite make out what she's saying. Could you please listen to the recipe and list all of the ingredients that my friend described? I only want the ingredients for the filling, as I have everything I need to make my favorite pie crust. I've attached the recipe as Strawberry pie.mp3.\n\nIn your response, please only list the ingredients, not any measurements. So if the recipe calls for \"a pinch of salt\" or \"two cups of ripe strawberries\" the ingredients on the list would be \"salt\" and \"ripe strawberries\".\n\nPlease format your response as a comma separated list of ingredients. Also, please alphabetize the ingredients.","Level":"1","file_name":"99c9cc74-fdc8-46c6-8f8d-3ce2d3bfeea3.mp3"},
{"task_id":"305ac316-eef6-4446-960a-92d80d542f82","question":"Who did the actor who played Ray in the Polish-language version of Everybody Loves Raymond play in Magda M.? Give only the first name.","Level":"1","file_name":""},
{"task_id":"f918266a-b3e0-4914-865d-4faa564f1aef","question":"What is the final numeric output from the attached Python code?","Level":"1","file_name":"f918266a-b3e0-4914-865d-4faa564f1aef.py"},
{"task_id":"3f57289b-8c60-48be-bd80-01f8099ca449","question":"How many at bats did the Yankee with the most walks in the 1977 regular season have that same season?","Level":"1","file_name":""},
{"task_id":"1f975693-876d-457b-a649-393859e79bf3","question":"Hi, I was out sick from my classes on Friday, so I'm trying to figure out what I need to study for my Calculus mid-term next week. My friend from class sent me an audio recording of Professor Willowbrook giving out the recommended reading for the test, but my headphones are broken :(\n\nCould you please listen to the recording for me and tell me the page numbers I'm supposed to go over? I've attached a file called Homework.mp3 that has the recording. Please provide just the page numbers as a comma-delimited list. And please provide the list in ascending order.","Level":"1","file_name":"1f975693-876d-457b-a649-393859e79bf3.mp3"},
{"task_id":"840bfca7-4f7b-481a-8794-c560c340185d","question":"On June 6, 2023, an article by Carolyn Collins Petersen was published in Universe Today. This article mentions a team that produced a paper about their observations, linked at the bottom of the article. Find this paper. Under what NASA award number was the work performed by R. G. Arendt supported by?","Level":"1","file_name":""},
{"task_id":"bda648d7-d618-4883-88f4-3466eabd860e","question":"Where were the Vietnamese specimens described by Kuznetzov in Nedoshivina's 2010 paper eventually deposited? Just give me the city name without abbreviations.","Level":"1","file_name":""},
{"task_id":"cf106601-ab4f-4af9-b045-5295fe67b37d","question":"What country had the least number of athletes at the 1928 Summer Olympics? If there's a tie for a number of athletes, return the first in alphabetical order. Give the IOC country code as your answer.","Level":"1","file_name":""},
{"task_id":"a0c07678-e491-4bbc-8f0b-07405144218f","question":"Who are the pitchers with the number before and after TaishΕ Tamai's number as of July 2023? Give them to me in the form Pitcher Before, Pitcher After, use their last names only, in Roman characters.","Level":"1","file_name":""},
{"task_id":"7bd855d8-463d-4ed5-93ca-5fe35145f733","question":"The attached Excel file contains the sales of menu items for a local fast-food chain. What were the total sales that the chain made from food (not including drinks)? Express your answer in USD with two decimal places.","Level":"1","file_name":"7bd855d8-463d-4ed5-93ca-5fe35145f733.xlsx"}
]
testMock2 = [
{
'task_id': 'a0c07678-e491-4bbc-8f0b-07405144218f',
'question': "Who are the pitchers with the number before and after TaishΕ Tamai's number as of July 2023? Give them to me in the form Pitcher Before, Pitcher After, use their last names only, in Roman characters.",
'Level': '1',
'file_name': ''
},
{
'task_id': 'cf106601-ab4f-4af9-b045-5295fe67b37d',
'question': "What country had the least number of athletes at the 1928 Summer Olympics? If there's a tie for a number of athletes, return the first in alphabetical order. Give the IOC country code as your answer.",
'Level': '1',
'file_name': ''
},
{
'task_id': '840bfca7-4f7b-481a-8794-c560c340185d',
'question': 'On June 6, 2023, an article by Carolyn Collins Petersen was published in Universe Today. This article mentions a team that produced a paper about their observations, linked at the bottom of the article. Find this paper. Under what NASA award number was the work performed by R. G. Arendt supported by?',
'Level': '1',
'file_name': ''
}, {
'task_id': 'bda648d7-d618-4883-88f4-3466eabd860e',
'question': "Where were the Vietnamese specimens described by Kuznetzov in Nedoshivina's 2010 paper eventually deposited? Just give me the city name without abbreviations.",
'Level': '1',
'file_name': ''
},
{
'task_id': '3f57289b-8c60-48be-bd80-01f8099ca449',
'question': 'How many at bats did the Yankee with the most walks in the 1977 regular season have that same season?',
'Level': '1',
'file_name': ''
},
{
'task_id': 'cabe07ed-9eca-40ea-8ead-410ef5e83f91',
'question': "What is the surname of the equine veterinarian mentioned in 1.E Exercises from the chemistry materials licensed by Marisa Alviar-Agnew & Henry Agnew under the CK-12 license in LibreText's Introductory Chemistry materials as compiled 08/21/2023?",
'Level': '1',
'file_name': ''
}, {
'task_id': '3cef3a44-215e-4aed-8e3b-b1e3f08063b7',
'question': "I'm making a grocery list for my mom, but she's a professor of botany and she's a real stickler when it comes to categorizing things. I need to add different foods to different categories on the grocery list, but if I make a mistake, she won't buy anything inserted in the wrong category. Here's the list I have so far:\n\nmilk, eggs, flour, whole bean coffee, Oreos, sweet potatoes, fresh basil, plums, green beans, rice, corn, bell pepper, whole allspice, acorns, broccoli, celery, zucchini, lettuce, peanuts\n\nI need to make headings for the fruits and vegetables. Could you please create a list of just the vegetables from my list? If you could do that, then I can figure out how to categorize the rest of the list into the appropriate categories. But remember that my mom is a real stickler, so make sure that no botanical fruits end up on the vegetable list, or she won't get them when she's at the store. Please alphabetize the list of vegetables, and place each item in a comma separated list.",
'Level': '1',
'file_name': ''
}
]
def process_questions(serviceList):
# 1. Estrai tutti i task_id da escludere (da whiteList e blackList)
exclude_ids = {q["task_id"] for q in whiteList + blackList}
# 2. Rimuovi da serviceList tutte le domande con task_id in exclude_ids
serviceList = [q for q in serviceList if q["task_id"] not in exclude_ids]
# 3. Calcola la somma delle domande rimanenti + quelle in whiteList
total = len(serviceList) + len(whiteList)
# 4. Se la somma supera 20, rimuovi a caso da serviceList
removed = []
if total > 20:
excess = total - 20
removed = random.sample(serviceList, excess)
serviceList = [q for q in serviceList if q not in removed]
# 5. Stampa le domande rimosse
print("Domande rimosse:")
for q in removed:
print(f"- {q['task_id']}: {q['question'][:80]}")
# 6. Stampa la serviceList aggiornata
print("\nService list aggiornata:")
for q in serviceList:
print(f"- {q['task_id']}: {q['question'][:80]}")
# 7. Aggiungi le domande della whiteList
final_list = serviceList + whiteList
return final_list
def generate_tool_descriptions(tools):
lines = []
for tool in tools:
name = tool.metadata.name
desc = tool.metadata.description
inputs = tool.metadata.fn.__annotations__
return_type = inputs.get('return', 'unknown')
arg_list = [
f"{k}: {v.__name__ if hasattr(v, '__name__') else str(v)}"
for k, v in inputs.items() if k != "return"
]
inputs_str = ", ".join(arg_list)
lines.append(f"- {name}: {desc}\n Takes inputs: {inputs_str}\n Returns an output of type: {return_type}")
return "\n".join(lines)
#Tools
def transcribe_audio(file_name: str) -> str:
print_coso(f"usato transcribe_audio tool: {result['text']}")
file_path = os.path.join("/data", file_name)
if not os.path.isfile(file_path):
return f"File not found: {file_path}"
model = whisper.load_model("base")
result = model.transcribe(file_path)
print_coso(f"transcribe_audio tool result: {result['text']}")
return result["text"]
def extract_ingredients(transcription: str) -> str:
"""
Estrae una lista alfabetica, separata da virgole, di ingredienti dal testo fornito,
mantenendo le descrizioni (es. 'freshly squeezed lemon juice').
"""
print_coso("tool extract_ingredients")
# pattern semplice per ingredienti comuni e le loro descrizioni
pattern = r"\b(?:a dash of |a pinch of |freshly squeezed |pure )?[a-zA-Z ]+?(?:strawberries|sugar|lemon juice|cornstarch|vanilla extract)\b"
matches = re.findall(pattern, transcription.lower())
# normalizza, rimuove duplicati e ordina
unique_ingredients = sorted(set(match.strip() for match in matches))
return ", ".join(unique_ingredients)
def web_search(query: str) -> str:
print_coso(f"tool web_search con query: {query}")
with DDGS() as ddgs:
results = []#ddgs.text(keywords = query, max_results=3)
#formattedResult = "\n".join([f"{res['title']} - {res['href']}" for res in results])
for r in ddgs.text(query, region="wt-wt", safesearch="off", max_results=3):
results.append(r)
time.sleep(1.5)
print_coso(f"tool web_search formattedResult: {results}")
return results
def transcribe_youtube_audio(url: str) -> str:
try:
print_coso(f"Downloading audio from: {url}")
# Setup download options
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': '/tmp/audio.%(ext)s',
'quiet': True,
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
# Transcribe
audio_path = '/tmp/audio.mp3'
model = whisper.load_model("base")
result = model.transcribe(audio_path)
print_coso(f"transcribe_youtube_audio result: {result['text']}")
return result["text"]
except Exception as e:
return f"Error transcribing YouTube audio: {e}"
def log_thought(thought: str) -> str:
print_coso(f"Tool log_thought: {thought}")
return "Thought logged."
def sum_list(numbers: list[float]) -> float:
total = sum(numbers)
print_coso(f"[TOOL] sum_list called with: {numbers}")
print_coso(f"[TOOL] Result: {total}")
return total
def is_food(items: list[str]) -> str:
food_items = {"burgers", "hot dogs", "salads", "fries", "ice cream"}
tags = {item: (item.lower() in food_items) for item in items}
result = ", ".join([f"{item}: {tags[item]}" for item in items])
print(f"tag_food_items({items}) -> {result}")
return result
def final_answer_tool(answer: str) -> str:
print_coso(f"Final answer: {answer}")
return answer
def print_coso(scritta: str):
if scritta is None:
print (f"porcoddio s'Γ¨ rrotto: {scritta}")
else:
print(f"coso {scritta}")
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
CACHE_FILE = "cached_submission.json"
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = BasicAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"[INFO] Agent code link: {agent_code}")
# 1. Fetch Questions
try:
if DOMANDE_MOCKATE:
total_questions = create_mock_questions()
else:
print("[INFO] Fetching questions...")
response = requests.get(questions_url, timeout=30)
response.raise_for_status()
print_coso(f"\n\n\n\questions.json: {response.json()}")
total_questions = process_questions(response.json())
questions_data = total_questions[:20]
if not questions_data:
return "No questions fetched.", None
print(f"[INFO] Fetched {len(questions_data)} questions.")
except Exception as e:
return f"[ERROR] Could not fetch questions: {e}", None
# 2. Run Agent
answers_payload = []
results_log = []
print(f"[INFO] Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question = item.get("question")
if not task_id or not question:
continue
try:
file_name = item.get("file_name")
answer = agent(question, file_name)
answers_payload.append({
"task_id": task_id,
"submitted_answer": answer,
})
results_log.append({
"Task ID": task_id,
"Question": question,
"Submitted Answer": answer,
})
except Exception as e:
traceback.print_exc()
results_log.append({
"Task ID": task_id,
"Question": question,
"Submitted Answer": f"[ERROR]: {e}"
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 3. Save locally
submission_data = {
"username": username,
"agent_code": agent_code,
"answers": answers_payload,
}
with open(CACHE_FILE, "w") as f:
json.dump(submission_data, f, indent=2)
print(f"[INFO] Saved answers locally to {CACHE_FILE}")
# 4. Submit answers
try:
print(f"[INFO] Submitting {len(answers_payload)} answers...")
response = requests.post(submit_url, json=submission_data, timeout=120)
response.raise_for_status()
result = response.json()
final_status = (
f"β
Submission Successful!\n"
f"User: {result.get('username')}\n"
f"Score: {result.get('score', '?')}% "
f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')})\n"
f"Message: {result.get('message', '')}"
)
return final_status, pd.DataFrame(results_log)
except requests.exceptions.Timeout:
return f"β Submission failed: Timeout.", pd.DataFrame(results_log)
except requests.exceptions.RequestException as e:
return f"β Submission failed: {e}", pd.DataFrame(results_log)
except Exception as e:
return f"β Unexpected error during submission: {e}", pd.DataFrame(results_log)
def retry_submission(profile: gr.OAuthProfile | None):
if not os.path.exists(CACHE_FILE):
return "β No cached submission file found.", None
try:
with open(CACHE_FILE, "r") as f:
cached_data = json.load(f)
response = requests.post(f"{DEFAULT_API_URL}/submit", json=cached_data, timeout=120)
response.raise_for_status()
result = response.json()
final_status = (
f"β
Retry Successful!\n"
f"User: {result.get('username')}\n"
f"Score: {result.get('score', '?')}% "
f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')})\n"
f"Message: {result.get('message', '')}"
)
return final_status, pd.DataFrame(cached_data["answers"])
except Exception as e:
return f"β Retry submission failed: {e}", None
def print_cached_submission(profile: gr.OAuthProfile | None):
if not os.path.exists(CACHE_FILE):
return "β οΈ No cached submission file found.", None
try:
with open(CACHE_FILE, "r") as f:
data = json.load(f)
status = (
f"π Cached submission for user '{data.get('username')}'\n"
f"{len(data.get('answers', []))} answers ready for submission."
)
return status, pd.DataFrame(data["answers"])
except Exception as e:
return f"β Could not load cached submission: {e}", None
def fetch_and_display_questions() -> str:
"""
Fetches the list of questions from the GAIA service and returns them in JSON-like format.
Also logs them to the console.
"""
api_url = os.getenv("DEFAULT_API_URL", "https://agents-course-unit4-scoring.hf.space")
questions_url = f"{api_url}/questions"
try:
response = requests.get(questions_url, timeout=30)
response.raise_for_status()
questions = response.json()
# Filtra le domande nel formato richiesto
minimal_format = [
{
"task_id": q.get("task_id"),
"question": q.get("question"),
"Level": q.get("Level"),
"file_name": q.get("file_name", "")
} for q in questions
]
output = json.dumps(minimal_format, indent=4)
print_coso("[QUESTIONS FETCHED]")
print_coso(output)
return output
except Exception as e:
error_message = f"Error fetching questions: {e}"
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
retry_button = gr.Button("π Retry Last Submission")
print_cache_button = gr.Button("π Show Cached Submission")
fetch_button = gr.Button("π₯ Fetch Questions from Server")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
question_output = gr.Textbox(label="Fetched Questions", lines=20, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
retry_button.click(fn=retry_submission, outputs=[status_output, results_table])
fetch_button.click(
fn=fetch_and_display_questions,
outputs=question_output
)
print_cache_button.click(fn=print_cached_submission, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"β
SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"β
SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|