import time import gradio as gr from witness.witness_rzero import WitnessRZero import app_math as app_math wrz = WitnessRZero(device="cpu") # remote inference speed dominates anyway HISTORY_TURNS = 3 # keep only last N turns PROMPT_CHAR_BUDGET = 6000 # trim long contexts GENERATION_TIME_CAP_S = 20 # stop streaming after N seconds def build_prompt(message, history, system_message): # keep only the last HISTORY_TURNS exchanges short_hist = history[-HISTORY_TURNS:] if history else [] messages = [{"role": "system", "content": system_message}] for u, a in short_hist: if u: messages.append({"role": "user", "content": u}) if a: messages.append({"role": "assistant", "content": a}) messages.append({"role": "user", "content": message}) prompt = "" for m in messages: prompt += f"{m['role'].capitalize()}: {m['content']}\n" # hard trim to avoid token explosion return prompt[-PROMPT_CHAR_BUDGET:] def respond(message, history, system_message, max_tokens, temperature, top_p): prompt = build_prompt(message, history, system_message) response, start = "", time.time() stream = wrz.client.text_generation( prompt, max_new_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, # return_full_text=False # set this in WitnessRZero if available ) for part in stream: response += part yield response if time.time() - start > GENERATION_TIME_CAP_S: yield response + "\n\n[stopped for speed; try 'Max new tokens' higher or ask a smaller question]" return demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=128, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()